Author | : William Stallings |
Publisher | : Pearson |
Total Pages | : 899 |
Release | : 2021-07-05 |
Genre | : Computers |
ISBN | : 013676729X |
Gain a Deep, Practical Understanding of 5G Technology, Applications, Architecture, Standards, and Ecosystem The 5G ultra-high-speed wireless communication standard is a major technological leap forward--substantially increasing speed and capacity, enhancing current use cases, and making many new applications practical. For technical professionals, managers, and students, 5G requires significant new knowledge and expertise. In 5G Wireless: A Comprehensive Introduction, renowned information technology author William Stallings presents a comprehensive and unified explanation of 5G's key applications, technologies, and standards. Like Stallings' other award-winning texts, this guide will help you quickly find the information and gain the mastery to succeed with critical new technology. Stallings first explains how cellular networks have evolved through 4G and now 5G, and surveys 5G's application areas and use cases. Next, he thoroughly introduces the 5G core network, covering SDN, NFV, network slicing, QoS, and edge computing--and provides a detailed coverage of the 5G air interface and radio access network. Throughout, key concepts are illuminated through realistic examples, review questions help you test your understanding, and references support further exploration. Understand the 5G ecosystem, its building blocks, standards, and R&D roadmaps Explore the Enhanced Mobile Broadband (eMBB) use case, where 5G enhances 4G in applications such as smart offices and dense urban communications Learn how Massive Machine Type Communications (mMTC) and Ultra-Reliable and Low-Latency Communications (URLCC) support new applications such as fog, IoT, and cloud Discover how 5G NextGen core (backbone) networks serve and interconnect wireless access networks that connect user devices Master key 5G NR Air Interface and Radio Access Network (RAN) concepts, including millimeter-wave transmission, MIMO antennas, and OFDM multiplexing