Advances in Catalysis

Advances in Catalysis
Author: Bruce C. Gates
Publisher: Academic Press
Total Pages: 466
Release: 2001-05-14
Genre: Science
ISBN: 9780122772511

Surface science emerged in the 1960s with the development of reliable ultrahigh vacuum apparatus, providing exact structures of surfaces of metal single crystals, information about their compositions, and relationships between surface structure and composition and catalytic reaction rates. Catalysis, the acceleration of a chemical reaction by a catalyst (substance), provided much of the driving force for the early development of surface science. As surface science continues its rapid development, this book illustrates how it is still driven by the challenges of catalysis and how both theory and scanning tunneling microscopy have forcefully emerged as essential tools. It is also evident how surface science continues to serve as the foundation of catalytic science. This is a compendium written by leading surface scientists presenting an incisive assessment of up-to-date theoretical and experimental results constituting the foundation of fundamental understanding of surface catalysis. This paperback.

Advances in Refining Catalysis

Advances in Refining Catalysis
Author: Deniz Uner
Publisher: CRC Press
Total Pages: 378
Release: 2017-03-16
Genre: Science
ISBN: 1315353083

To meet changing market demands that have stringent emission standards and to ensure proper performance in refinery units, evaluation of novel catalyst designs and results from material characterization and testing of catalysts are of crucial importance for refiners as well as for catalyst manufacturers. This book highlights recent developments in the application of refinery catalysts in selected units such as fluid catalytic cracking (FCC), hydrogen production for hydroprocessing units, hydrotreating, hydrocracking, and sustainable processing of biomass into biofuels.

Advances in Friedel-Crafts Acylation Reactions

Advances in Friedel-Crafts Acylation Reactions
Author: Giovanni Sartori
Publisher: CRC Press
Total Pages: 222
Release: 2009-12-04
Genre: Science
ISBN: 1420067931

Used in the production of a wide number of fine chemicals and pharmaceuticals, the Friedel-Crafts acylation reaction represents a synthetic process of great interest to organic chemists of academia and industry. Nearly 40 years since the last major treatise on the topic and reflecting the growing emphasis on green technology, Advances in Friedel-Cr

Nanoparticles in Catalysis

Nanoparticles in Catalysis
Author: Karine Philippot
Publisher: John Wiley & Sons
Total Pages: 384
Release: 2021-06-28
Genre: Technology & Engineering
ISBN: 3527346074

Nanoparticles in Catalysis Discover an essential overview of recent advances and trends in nanoparticle catalysis Catalysis in the presence of metal nanoparticles is an important and rapidly developing research field at the frontier of homogeneous and heterogeneous catalysis. In Nanoparticles in Catalysis, accomplished chemists and authors Karine Philippot and Alain Roucoux deliver a comprehensive guide to the key aspects of nanoparticle catalysis, ranging from synthesis, activation methodology, characterization, and theoretical modeling, to application in important catalytic reactions, like hydrogen production and biomass conversion. The book offers readers a review of modern and efficient tools for the synthesis of nanoparticles in solution or onto supports. It emphasizes the application of metal nanoparticles in important catalytic reactions and includes chapters on activation methodology and supported nanoclusters. Written by an international team of leading voices in the field, Nanoparticles in Catalysis is an indispensable resource for researchers and professionals in academia and industry alike. Readers will also benefit from the inclusion of: A thorough introduction to New Trends in the Design of Metal Nanoparticles and Derived Nanomaterials for Catalysis An exploration of Dynamic Catalysis and the Interface Between Molecular and Heterogeneous Catalysts A practical discussion of Metal Nanoparticles in Water: A Relevant Toolbox for Green Catalysis Organometallic Metal Nanoparticles for Catalysis A concise treatment of the opportunities and challenges of CO2 Hydrogenation to Oxygenated Chemicals Over Supported Nanoparticle Catalysts Perfect for catalytic, organic, inorganic, and physical chemists, Nanoparticles in Catalysis will also earn a place in the libraries of chemists working with organometallics and materials scientists seeking a one-stop resource with expert knowledge on the synthesis and characterization of nanoparticle catalysis.

CO2 Hydrogenation Catalysis

CO2 Hydrogenation Catalysis
Author: Yuichiro Himeda
Publisher: John Wiley & Sons
Total Pages: 322
Release: 2021-06-28
Genre: Technology & Engineering
ISBN: 3527346635

A guide to the effective catalysts and latest advances in CO2 conversion in chemicals and fuels Carbon dioxide hydrogenation is one of the most promising and economic techniques to utilize CO2 emissions to produce value-added chemicals. With contributions from an international team of experts on the topic, CO2 Hydrogenation Catalysis offers a comprehensive review of the most recent developments in the catalytic hydrogenation of carbon dioxide to formic acid/formate, methanol, methane, and C2+ products. The book explores the electroreduction of carbon dioxide and contains an overview on hydrogen production from formic acid and methanol. With a practical review of the advances and challenges in future CO2 hydrogenation research, the book provides an important guide for researchers in academia and industry working in the field of catalysis, organometallic chemistry, green and sustainable chemistry, as well as energy conversion and storage. This important book: Offers a unique review of effective catalysts and the latest advances in CO2 conversion Explores how to utilize CO2 emissions to produce value-added chemicals and fuels such as methanol, olefins, gasoline, aromatics Includes the latest research in homogeneous and heterogeneous catalysis as well as electrocatalysis Highlights advances and challenges for future investigation Written for chemists, catalytic chemists, electrochemists, chemists in industry, and chemical engineers, CO2 Hydrogenation Catalysis offers a comprehensive resource to understanding how CO2 emissions can create value-added chemicals.

Fischer-Tropsch Synthesis, Catalysts, and Catalysis

Fischer-Tropsch Synthesis, Catalysts, and Catalysis
Author: Burtron H. Davis
Publisher: CRC Press
Total Pages: 424
Release: 2016-04-06
Genre: Science
ISBN: 1466555300

This book is based on a symposium held during the 248th American Chemical Society meeting that focused on use of the Fischer-Tropsch process in producing synthetic fuels. Its contents reflect the four dominant subjects of the meeting: catalyst preparation and activation, catalyst activity and reaction mechanisms, catalyst characterization and related reactions, and topics concerning commercializing the Fischer-Tropsch process. It covers recent developments related to renewable resources and green energy and provides a glimpse of the commercial potential of the Fischer-Tropsch process in synthetic fuel production.

Heterogeneous Catalysts

Heterogeneous Catalysts
Author: Wey Yang Teoh
Publisher: John Wiley & Sons
Total Pages: 768
Release: 2021-02-23
Genre: Technology & Engineering
ISBN: 352781356X

Presents state-of-the-art knowledge of heterogeneous catalysts including new applications in energy and environmental fields This book focuses on emerging techniques in heterogeneous catalysis, from new methodology for catalysts design and synthesis, surface studies and operando spectroscopies, ab initio techniques, to critical catalytic systems as relevant to energy and the environment. It provides the vision of addressing the foreseeable knowledge gap unfilled by classical knowledge in the field. Heterogeneous Catalysts: Advanced Design, Characterization and Applications begins with an overview on the evolution in catalysts synthesis and introduces readers to facets engineering on catalysts; electrochemical synthesis of nanostructured catalytic thin films; and bandgap engineering of semiconductor photocatalysts. Next, it examines how we are gaining a more precise understanding of catalytic events and materials under working conditions. It covers bridging pressure gap in surface catalytic studies; tomography in catalysts design; and resolving catalyst performance at nanoscale via fluorescence microscopy. Quantum approaches to predicting molecular reactions on catalytic surfaces follows that, along with chapters on Density Functional Theory in heterogeneous catalysis; first principles simulation of electrified interfaces in electrochemistry; and high-throughput computational design of novel catalytic materials. The book also discusses embracing the energy and environmental challenges of the 21st century through heterogeneous catalysis and much more. Presents recent developments in heterogeneous catalysis with emphasis on new fundamentals and emerging techniques Offers a comprehensive look at the important aspects of heterogeneous catalysis Provides an applications-oriented, bottoms-up approach to a high-interest subject that plays a vital role in industry and is widely applied in areas related to energy and environment Heterogeneous Catalysts: Advanced Design, Characterization and Applications is an important book for catalytic chemists, materials scientists, surface chemists, physical chemists, inorganic chemists, chemical engineers, and other professionals working in the chemical industry.

Principles and Advances in Supramolecular Catalysis

Principles and Advances in Supramolecular Catalysis
Author: Jubaraj Bikash Baruah
Publisher: CRC Press
Total Pages: 341
Release: 2019-04-01
Genre: Science
ISBN: 0429602529

Supramolecular catalysis is involved in assimilation or growth of biological products and it has advantages over conventional catalysis in dealing with systems beyond molecules to mimic the biological catalytic processes. Principles and Advances in Supramolecular Catalysis shows how a supramolecular catalytic reaction proceeds and how interactions among molecules provide vessels or specific binding sites to carry out chemical reactions. The utilities of such catalytic reactions in waste, hazard management, medicine, food, etc. are explained in this book. The book focuses on examples to provide a fundamental basis so that, in the future, supramolecular catalytic reactions are utilised in the field of chemical, biological, biophysical sciences and technologies. Features: Discusses fundamental and interdisciplinary aspects of supramolecular catalysis Narrates mechano-chemical and stimuli-guided supramolecular catalytic reactions Divulges the intriguing aspects of self-replications and self-assembling performed through supramolecular catalysis Incorporates supramolecular catalytic reactions of metal-organic frameworks as artificial metalloenzymes

Advances in Catalytic Activation of Dioxygen by Metal Complexes

Advances in Catalytic Activation of Dioxygen by Metal Complexes
Author: László I. Simándi
Publisher: Springer Science & Business Media
Total Pages: 349
Release: 2006-04-11
Genre: Science
ISBN: 0306478161

The subject of dioxygen activation and homogeneous catalytic oxidation by metal complexes has been in the focus of attention over the last 20 years. The widespread interest is illustrated by its recurring presence among the sessions and subject areas of important international conferences on various aspects of bioinorganic and coordination chemistry as well as catalysis. The most prominent examples are ICCC, ICBIC, EUROBIC, ISHC, and of course the ADHOC series of meetings focusing on the subject itself. Similarly, the number of original and review papers devoted to various aspects of dioxygen activation are on the rise. This trend is due obviously to the relevance of catalytic oxidation to biological processes such as dioxygen transport, and the action of oxygenase and oxidase enzymes related to metabolism. The structural and functional modeling of metalloenzymes, particularly of those containing iron and copper, by means of low-molecular complexes of iron, copper, ruthenium, cobalt, manganese, etc., have provided a wealth of indirect information helping to understand how the active centers of metalloenzymes may operate. The knowledge gained from the study of metalloenzyme models is also applicable in the design of transition metal complexes as catalytsts for specific reactions. This approach has come to be known as biomimetic or bioinspired catalysis and continues to be a fruitful and expanding area of research.