Advances in Evolutionary Computing

Advances in Evolutionary Computing
Author: Ashish Ghosh
Publisher: Springer Science & Business Media
Total Pages: 1001
Release: 2012-12-06
Genre: Computers
ISBN: 3642189652

This book provides a collection of fourty articles containing new material on both theoretical aspects of Evolutionary Computing (EC), and demonstrating the usefulness/success of it for various kinds of large-scale real world problems. Around 23 articles deal with various theoretical aspects of EC and 17 articles demonstrate the success of EC methodologies. These articles are written by leading experts of the field from different countries all over the world.

Recent Advances in Swarm Intelligence and Evolutionary Computation

Recent Advances in Swarm Intelligence and Evolutionary Computation
Author: Xin-She Yang
Publisher: Springer
Total Pages: 295
Release: 2014-12-27
Genre: Technology & Engineering
ISBN: 331913826X

This timely review volume summarizes the state-of-the-art developments in nature-inspired algorithms and applications with the emphasis on swarm intelligence and bio-inspired computation. Topics include the analysis and overview of swarm intelligence and evolutionary computation, hybrid metaheuristic algorithms, bat algorithm, discrete cuckoo search, firefly algorithm, particle swarm optimization, and harmony search as well as convergent hybridization. Application case studies have focused on the dehydration of fruits and vegetables by the firefly algorithm and goal programming, feature selection by the binary flower pollination algorithm, job shop scheduling, single row facility layout optimization, training of feed-forward neural networks, damage and stiffness identification, synthesis of cross-ambiguity functions by the bat algorithm, web document clustering, truss analysis, water distribution networks, sustainable building designs and others. As a timely review, this book can serve as an ideal reference for graduates, lecturers, engineers and researchers in computer science, evolutionary computing, artificial intelligence, machine learning, computational intelligence, data mining, engineering optimization and designs.

Advances in Evolutionary Algorithms

Advances in Evolutionary Algorithms
Author: Chang Wook Ahn
Publisher: Springer
Total Pages: 180
Release: 2007-05-22
Genre: Technology & Engineering
ISBN: 3540317597

Genetic and evolutionary algorithms (GEAs) have often achieved an enviable success in solving optimization problems in a wide range of disciplines. This book provides effective optimization algorithms for solving a broad class of problems quickly, accurately, and reliably by employing evolutionary mechanisms.

Design by Evolution

Design by Evolution
Author: Philip F. Hingston
Publisher: Springer Science & Business Media
Total Pages: 346
Release: 2008-09-30
Genre: Computers
ISBN: 3540741119

Evolution is Nature’s design process. The natural world is full of wonderful examples of its successes, from engineering design feats such as powered flight, to the design of complex optical systems such as the mammalian eye, to the merely stunningly beautiful designs of orchids or birds of paradise. With increasing computational power, we are now able to simulate this process with greater fidelity, combining complex simulations with high-performance evolutionary algorithms to tackle problems that used to be impractical. This book showcases the state of the art in evolutionary algorithms for design. The chapters are organized by experts in the following fields: evolutionary design and "intelligent design" in biology, art, computational embryogeny, and engineering. The book will be of interest to researchers, practitioners and graduate students in natural computing, engineering design, biology and the creative arts.

Theory of Evolutionary Computation

Theory of Evolutionary Computation
Author: Benjamin Doerr
Publisher: Springer Nature
Total Pages: 527
Release: 2019-11-20
Genre: Computers
ISBN: 3030294145

This edited book reports on recent developments in the theory of evolutionary computation, or more generally the domain of randomized search heuristics. It starts with two chapters on mathematical methods that are often used in the analysis of randomized search heuristics, followed by three chapters on how to measure the complexity of a search heuristic: black-box complexity, a counterpart of classical complexity theory in black-box optimization; parameterized complexity, aimed at a more fine-grained view of the difficulty of problems; and the fixed-budget perspective, which answers the question of how good a solution will be after investing a certain computational budget. The book then describes theoretical results on three important questions in evolutionary computation: how to profit from changing the parameters during the run of an algorithm; how evolutionary algorithms cope with dynamically changing or stochastic environments; and how population diversity influences performance. Finally, the book looks at three algorithm classes that have only recently become the focus of theoretical work: estimation-of-distribution algorithms; artificial immune systems; and genetic programming. Throughout the book the contributing authors try to develop an understanding for how these methods work, and why they are so successful in many applications. The book will be useful for students and researchers in theoretical computer science and evolutionary computing.

Introduction to Evolutionary Computing

Introduction to Evolutionary Computing
Author: A.E. Eiben
Publisher: Springer Science & Business Media
Total Pages: 328
Release: 2007-08-06
Genre: Computers
ISBN: 9783540401841

The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.

Evolutionary Computation: Theory And Applications

Evolutionary Computation: Theory And Applications
Author: Xin Yao
Publisher: World Scientific
Total Pages: 376
Release: 1999-11-22
Genre: Computers
ISBN: 9814518166

Evolutionary computation is the study of computational systems which use ideas and get inspiration from natural evolution and adaptation. This book is devoted to the theory and application of evolutionary computation. It is a self-contained volume which covers both introductory material and selected advanced topics. The book can roughly be divided into two major parts: the introductory one and the one on selected advanced topics. Each part consists of several chapters which present an in-depth discussion of selected topics. A strong connection is established between evolutionary algorithms and traditional search algorithms. This connection enables us to incorporate ideas in more established fields into evolutionary algorithms. The book is aimed at a wide range of readers. It does not require previous exposure to the field since introductory material is included. It will be of interest to anyone who is interested in adaptive optimization and learning. People in computer science, artificial intelligence, operations research, and various engineering fields will find it particularly interesting.

Introduction to Evolutionary Algorithms

Introduction to Evolutionary Algorithms
Author: Xinjie Yu
Publisher: Springer Science & Business Media
Total Pages: 427
Release: 2010-06-10
Genre: Computers
ISBN: 1849961298

Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.

Evolutionary Optimization Algorithms

Evolutionary Optimization Algorithms
Author: Dan Simon
Publisher: John Wiley & Sons
Total Pages: 776
Release: 2013-06-13
Genre: Mathematics
ISBN: 1118659503

A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.