Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment
Author: Jyeshtharaj Joshi
Publisher: Woodhead Publishing
Total Pages: 888
Release: 2019-06-11
Genre: Science
ISBN: 0081023375

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment presents the latest computational fluid dynamic technologies. It includes an evaluation of safety systems for reactors using CFD and their design, the modeling of Severe Accident Phenomena Using CFD, Model Development for Two-phase Flows, and Applications for Sodium and Molten Salt Reactor Designs. Editors Joshi and Nayak have an invaluable wealth of experience that enables them to comment on the development of CFD models, the technologies currently in practice, and the future of CFD in nuclear reactors. Readers will find a thematic discussion on each aspect of CFD applications for the design and safety assessment of Gen II to Gen IV reactor concepts that will help them develop cost reduction strategies for nuclear power plants.

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment
Author: Jyeshtharaj Joshi
Publisher: Woodhead Publishing
Total Pages: 890
Release: 2019-06-09
Genre: Science
ISBN: 0081023383

Advances of Computational Fluid Dynamics in Nuclear Reactor Design and Safety Assessment presents the latest computational fluid dynamic technologies. It includes an evaluation of safety systems for reactors using CFD and their design, the modeling of Severe Accident Phenomena Using CFD, Model Development for Two-phase Flows, and Applications for Sodium and Molten Salt Reactor Designs. Editors Joshi and Nayak have an invaluable wealth of experience that enables them to comment on the development of CFD models, the technologies currently in practice, and the future of CFD in nuclear reactors. Readers will find a thematic discussion on each aspect of CFD applications for the design and safety assessment of Gen II to Gen IV reactor concepts that will help them develop cost reduction strategies for nuclear power plants. - Presents a thematic and comprehensive discussion on each aspect of CFD applications for the design and safety assessment of nuclear reactors - Provides an historical review of the development of CFD models, discusses state-of-the-art concepts, and takes an applied and analytic look toward the future - Includes CFD tools and simulations to advise and guide the reader through enhancing cost effectiveness, safety and performance optimization

Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors

Thermal Hydraulics Aspects of Liquid Metal Cooled Nuclear Reactors
Author: Ferry Roelofs
Publisher: Woodhead Publishing
Total Pages: 464
Release: 2018-11-30
Genre: Science
ISBN: 0081019815

Thermal Hydraulics Aspects of Liquid Metal cooled Nuclear Reactors is a comprehensive collection of liquid metal thermal hydraulics research and development for nuclear liquid metal reactor applications. A deliverable of the SESAME H2020 project, this book is written by top European experts who discuss topics of note that are supplemented by an international contribution from U.S. partners within the framework of the NEAMS program under the U.S. DOE. This book is a convenient source for students, professionals and academics interested in liquid metal thermal hydraulics in nuclear applications. In addition, it will also help newcomers become familiar with current techniques and knowledge. - Presents the latest information on one of the deliverables of the SESAME H2020 project - Provides an overview on the design and history of liquid metal cooled fast reactors worldwide - Describes the challenges in thermal hydraulics related to the design and safety analysis of liquid metal cooled fast reactors - Includes the codes, methods, correlations, guidelines and limitations for liquid metal fast reactor thermal hydraulic simulations clearly - Discusses state-of-the-art, multi-scale techniques for liquid metal fast reactor thermal hydraulics applications

Advanced Reactor Concepts (ARC)

Advanced Reactor Concepts (ARC)
Author: Ali Zamani Paydar
Publisher: Elsevier
Total Pages: 454
Release: 2023-07-20
Genre: Technology & Engineering
ISBN: 0443189900

Nuclear engineers advancing the energy transition are understanding more about the next generation of nuclear plants; however, it is still difficult to access all the critical types, concepts, and applications in one location. Advanced Reactor Concepts (ARC): A New Nuclear Power Plant Perspective Producing Energy gives engineers and nuclear engineering researchers the comprehensive tools to get up to date on the latest technology supporting generation IV nuclear plant systems. After providing a brief history of this area, alternative technology is discussed such as electromagnetic pumps, heat pipes as control devices, Nuclear Air-Brayton Combined Cycles integration, and instrumentation helping nuclear plants to provide dispatchable electricity to the grid and heat to industry. Packed with examples of all the types, benefits, and challenges involved, Advanced Reactor Concepts (ARC) delivers the go-to reference that engineers need to advance safe nuclear energy as a low-carbon option. - Describes theory and concepts on generation IV technology such as advanced reactor concepts (ARC) and electromagnetic pumps, and compares different types and sizes. - Sets out the energy transition with critical carbon-free technology that can supplement intermittent power sources such as wind and solar. - Explains alternative heat storage technology, including Nuclear Air-Brayton Combined Cycles. - Introduces advanced main instrumentation systems for in-core probes.

Thermal-Hydraulics of Water Cooled Nuclear Reactors

Thermal-Hydraulics of Water Cooled Nuclear Reactors
Author: Francesco D'Auria
Publisher: Woodhead Publishing
Total Pages: 1200
Release: 2017-05-18
Genre: Technology & Engineering
ISBN: 0081006799

Thermal Hydraulics of Water-Cooled Nuclear Reactors reviews flow and heat transfer phenomena in nuclear systems and examines the critical contribution of this analysis to nuclear technology development. With a strong focus on system thermal hydraulics (SYS TH), the book provides a detailed, yet approachable, presentation of current approaches to reactor thermal hydraulic analysis, also considering the importance of this discipline for the design and operation of safe and efficient water-cooled and moderated reactors. Part One presents the background to nuclear thermal hydraulics, starting with a historical perspective, defining key terms, and considering thermal hydraulics requirements in nuclear technology. Part Two addresses the principles of thermodynamics and relevant target phenomena in nuclear systems. Next, the book focuses on nuclear thermal hydraulics modeling, covering the key areas of heat transfer and pressure drops, then moving on to an introduction to SYS TH and computational fluid dynamics codes. The final part of the book reviews the application of thermal hydraulics in nuclear technology, with chapters on V&V and uncertainty in SYS TH codes, the BEPU approach, and applications to new reactor design, plant lifetime extension, and accident analysis. This book is a valuable resource for academics, graduate students, and professionals studying the thermal hydraulic analysis of nuclear power plants and using SYS TH to demonstrate their safety and acceptability. - Contains a systematic and comprehensive review of current approaches to the thermal-hydraulic analysis of water-cooled and moderated nuclear reactors - Clearly presents the relationship between system level (top-down analysis) and component level phenomenology (bottom-up analysis) - Provides a strong focus on nuclear system thermal hydraulic (SYS TH) codes - Presents detailed coverage of the applications of thermal-hydraulics to demonstrate the safety and acceptability of nuclear power plants

Process and Plant Safety

Process and Plant Safety
Author: Jürgen Schmidt
Publisher: John Wiley & Sons
Total Pages: 407
Release: 2012-05-14
Genre: Technology & Engineering
ISBN: 3527330275

The safe operation of plants is of paramount importance in the chemical, petrochemical and pharmaceutical industries. Best practice in process and plant safety allows both the prevention of hazards and the mitigation of consequences. Safety Technology is continuously advancing to new levels and Computational Fluid Dynamics (CFD) is already successfully established as a tool to ensure the safe operation of industrial plants. With CFD tools, a great amount of knowledge can be gained as both the necessary safety measures and the economic operation of plants can be simultaneously determined. Young academics, safety experts and safety managers in all parts of the industry will henceforth be forced to responsibly judge these new results from a safety perspective. This is the main challenge for the future of safety technology. This book serves as a guide to elaborating and determining the principles, assumptions, strengths, limitations and application areas of utilizing CFD in process and plant safety, and safety management. The book offers recommendations relating to guidelines, procedures, frameworks and technology for creating a higher level of safety for chemical and petrochemical plants. It includes modeling aids and concrete examples of industrial safety measures for hazard prevention.

Thermal-Hydraulic Analysis of Nuclear Reactors

Thermal-Hydraulic Analysis of Nuclear Reactors
Author: Bahman Zohuri
Publisher: Springer
Total Pages: 845
Release: 2017-05-23
Genre: Technology & Engineering
ISBN: 3319538292

This revised text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. The book begins with fundamental definitions of units and dimensions, thermodynamic variables and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. There have been significant new findings for intercooled systems since the previous edition published and they will be included in this volume. New technology plans for using a Nuclear Air-Brayton as a storage system for a low carbon grid are presented along with updated component sizes and performance criteria for Small Modular Reactors. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors.

Safety Margins of Operating Rectors

Safety Margins of Operating Rectors
Author: M. Antila
Publisher: International Atomic Energy Agency
Total Pages: 145
Release: 2003
Genre: Business & Economics
ISBN: 9789201181022

This TECDOC deals with a basic concept of safety margins and their role in assuring safety of nuclear Installations. The document describes capabilities of thermal hydraulic computer codes used to determine safety margins, evaluation of uncertainties, methods for safety margin evaluation and utilization of safety margins in operation and modifications of nuclear power plants.

Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design

Summary Review on the Application of Computational Fluid Dynamics in Nuclear Power Plant Design
Author: IAEA
Publisher: International Atomic Energy Agency
Total Pages: 121
Release: 2022-03-28
Genre: Business & Economics
ISBN: 9201004214

This publication documents the results of an IAEA coordinated research project (CRP)on the application of computational fluid dynamics (CFD) codes for nuclear power plant design. The main objective was to benchmark CFD codes, model options and methods against CFD experimental data under single phase flow conditions. This publication summarizes the current capabilities and applications of CFD codes, and their present qualification level, with respect to nuclear power plant design requirements. It is not intended to be comprehensive, focusing instead on international experience in the practical application of these tools in designing nuclear power plant components and systems. The guidance in this publication is based on inputs provided by international nuclear industry experts directly involved in nuclear power plant design issues, CFD applications, and in related experimentation and validation highlighted during the CRP.