Algorithmic Information Theory

Algorithmic Information Theory
Author: Gregory. J. Chaitin
Publisher: Cambridge University Press
Total Pages: 192
Release: 2004-12-02
Genre: Computers
ISBN: 9780521616041

Chaitin, the inventor of algorithmic information theory, presents in this book the strongest possible version of Gödel's incompleteness theorem, using an information theoretic approach based on the size of computer programs. One half of the book is concerned with studying the halting probability of a universal computer if its program is chosen by tossing a coin. The other half is concerned with encoding the halting probability as an algebraic equation in integers, a so-called exponential diophantine equation.

Algorithmic Information Theory for Physicists and Natural Scientists

Algorithmic Information Theory for Physicists and Natural Scientists
Author: Sean D Devine
Publisher:
Total Pages: 238
Release: 2020-06-11
Genre:
ISBN: 9780750326414

Algorithmic information theory (AIT), or Kolmogorov complexity as it is known to mathematicians, can provide a useful tool for scientists to look at natural systems, however, some critical conceptual issues need to be understood and the advances already made collated and put in a form accessible to scientists. This book has been written in the hope that readers will be able to absorb the key ideas behind AIT so that they are in a better position to access the mathematical developments and to apply the ideas to their own areas of interest. The theoretical underpinning of AIT is outlined in the earlier chapters, while later chapters focus on the applications, drawing attention to the thermodynamic commonality between ordered physical systems such as the alignment of magnetic spins, the maintenance of a laser distant from equilibrium, and ordered living systems such as bacterial systems, an ecology, and an economy. Key Features Presents a mathematically complex subject in language accessible to scientists Provides rich insights into modelling far-from-equilibrium systems Emphasises applications across range of fields, including physics, biology and econophysics Empowers scientists to apply these mathematical tools to their own research

Algorithmic Randomness and Complexity

Algorithmic Randomness and Complexity
Author: Rodney G. Downey
Publisher: Springer Science & Business Media
Total Pages: 883
Release: 2010-10-29
Genre: Computers
ISBN: 0387684417

Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of "algorithmic randomness" and complexity for scientists from diverse fields.

Algorithmic Information Theory

Algorithmic Information Theory
Author: Peter Seibt
Publisher: Springer Science & Business Media
Total Pages: 446
Release: 2007-02-15
Genre: Computers
ISBN: 3540332197

Algorithmic Information Theory treats the mathematics of many important areas in digital information processing. It has been written as a read-and-learn book on concrete mathematics, for teachers, students and practitioners in electronic engineering, computer science and mathematics. The presentation is dense, and the examples and exercises are numerous. It is based on lectures on information technology (Data Compaction, Cryptography, Polynomial Coding) for engineers.

Information Theory, Inference and Learning Algorithms

Information Theory, Inference and Learning Algorithms
Author: David J. C. MacKay
Publisher: Cambridge University Press
Total Pages: 694
Release: 2003-09-25
Genre: Computers
ISBN: 9780521642989

Information theory and inference, taught together in this exciting textbook, lie at the heart of many important areas of modern technology - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics and cryptography. The book introduces theory in tandem with applications. Information theory is taught alongside practical communication systems such as arithmetic coding for data compression and sparse-graph codes for error-correction. Inference techniques, including message-passing algorithms, Monte Carlo methods and variational approximations, are developed alongside applications to clustering, convolutional codes, independent component analysis, and neural networks. Uniquely, the book covers state-of-the-art error-correcting codes, including low-density-parity-check codes, turbo codes, and digital fountain codes - the twenty-first-century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, the book is ideal for self-learning, and for undergraduate or graduate courses. It also provides an unparalleled entry point for professionals in areas as diverse as computational biology, financial engineering and machine learning.

An Introduction to Kolmogorov Complexity and Its Applications

An Introduction to Kolmogorov Complexity and Its Applications
Author: Ming Li
Publisher: Springer Science & Business Media
Total Pages: 655
Release: 2013-03-09
Genre: Mathematics
ISBN: 1475726066

Briefly, we review the basic elements of computability theory and prob ability theory that are required. Finally, in order to place the subject in the appropriate historical and conceptual context we trace the main roots of Kolmogorov complexity. This way the stage is set for Chapters 2 and 3, where we introduce the notion of optimal effective descriptions of objects. The length of such a description (or the number of bits of information in it) is its Kolmogorov complexity. We treat all aspects of the elementary mathematical theory of Kolmogorov complexity. This body of knowledge may be called algo rithmic complexity theory. The theory of Martin-Lof tests for random ness of finite objects and infinite sequences is inextricably intertwined with the theory of Kolmogorov complexity and is completely treated. We also investigate the statistical properties of finite strings with high Kolmogorov complexity. Both of these topics are eminently useful in the applications part of the book. We also investigate the recursion theoretic properties of Kolmogorov complexity (relations with Godel's incompleteness result), and the Kolmogorov complexity version of infor mation theory, which we may call "algorithmic information theory" or "absolute information theory. " The treatment of algorithmic probability theory in Chapter 4 presup poses Sections 1. 6, 1. 11. 2, and Chapter 3 (at least Sections 3. 1 through 3. 4).

Universal Artificial Intelligence

Universal Artificial Intelligence
Author: Marcus Hutter
Publisher: Springer Science & Business Media
Total Pages: 294
Release: 2005-12-29
Genre: Computers
ISBN: 3540268774

Personal motivation. The dream of creating artificial devices that reach or outperform human inteUigence is an old one. It is also one of the dreams of my youth, which have never left me. What makes this challenge so interesting? A solution would have enormous implications on our society, and there are reasons to believe that the AI problem can be solved in my expected lifetime. So, it's worth sticking to it for a lifetime, even if it takes 30 years or so to reap the benefits. The AI problem. The science of artificial intelligence (AI) may be defined as the construction of intelligent systems and their analysis. A natural definition of a system is anything that has an input and an output stream. Intelligence is more complicated. It can have many faces like creativity, solving prob lems, pattern recognition, classification, learning, induction, deduction, build ing analogies, optimization, surviving in an environment, language processing, and knowledge. A formal definition incorporating every aspect of intelligence, however, seems difficult. Most, if not all known facets of intelligence can be formulated as goal driven or, more precisely, as maximizing some utility func tion. It is, therefore, sufficient to study goal-driven AI; e. g. the (biological) goal of animals and humans is to survive and spread. The goal of AI systems should be to be useful to humans.

Information, Randomness & Incompleteness

Information, Randomness & Incompleteness
Author: Gregory J. Chaitin
Publisher: World Scientific
Total Pages: 292
Release: 1987
Genre: Mathematics
ISBN: 9789971504809

The papers gathered in this book were published over a period of more than twenty years in widely scattered journals. They led to the discovery of randomness in arithmetic which was presented in the recently published monograph on ?Algorithmic Information Theory? by the author. There the strongest possible version of G”del's incompleteness theorem, using an information-theoretic approach based on the size of computer programs, was discussed. The present book is intended as a companion volume to the monograph and it will serve as a stimulus for work on complexity, randomness and unpredictability, in physics and biology as well as in metamathematics.

Information and Randomness

Information and Randomness
Author: Cristian Calude
Publisher: Springer Science & Business Media
Total Pages: 252
Release: 2013-03-09
Genre: Mathematics
ISBN: 3662030497

"Algorithmic information theory (AIT) is the result of putting Shannon's information theory and Turing's computability theory into a cocktail shaker and shaking vigorously", says G.J. Chaitin, one of the fathers of this theory of complexity and randomness, which is also known as Kolmogorov complexity. It is relevant for logic (new light is shed on Gödel's incompleteness results), physics (chaotic motion), biology (how likely is life to appear and evolve?), and metaphysics (how ordered is the universe?). This book, benefiting from the author's research and teaching experience in Algorithmic Information Theory (AIT), should help to make the detailed mathematical techniques of AIT accessible to a much wider audience.