Analysis and Design of Intelligent Systems Using Soft Computing Techniques

Analysis and Design of Intelligent Systems Using Soft Computing Techniques
Author: Patricia Melin
Publisher: Springer Science & Business Media
Total Pages: 856
Release: 2007-09-20
Genre: Technology & Engineering
ISBN: 354072432X

This book comprises a selection of papers on new methods for analysis and design of hybrid intelligent systems using soft computing techniques from the IFSA 2007 World Congress, held in Cancun, Mexico, June 2007.

Soft Computing for Intelligent Systems

Soft Computing for Intelligent Systems
Author: Nikhil Marriwala
Publisher: Springer Nature
Total Pages: 653
Release: 2021-06-22
Genre: Technology & Engineering
ISBN: 9811610487

This book presents high-quality research papers presented at the International Conference on Soft Computing for Intelligent Systems (SCIS 2020), held during 18–20 December 2020 at University Institute of Engineering and Technology, Kurukshetra University, Kurukshetra, Haryana, India. The book encompasses all branches of artificial intelligence, computational sciences and machine learning which is based on computation at some level such as AI-based Internet of things, sensor networks, robotics, intelligent diabetic retinopathy, intelligent cancer genes analysis using computer vision, evolutionary algorithms, fuzzy systems, medical automatic identification intelligence system and applications in agriculture, health care, smart grid and instrumentation systems. The book is helpful for educators, researchers and developers working in the area of recent advances and upcoming technologies utilizing computational sciences in signal processing, imaging, computing, instrumentation, artificial intelligence and their applications.

Intelligent Control Systems Using Soft Computing Methodologies

Intelligent Control Systems Using Soft Computing Methodologies
Author: Ali Zilouchian
Publisher: CRC Press
Total Pages: 504
Release: 2001-03-27
Genre: Technology & Engineering
ISBN: 1420058142

In recent years, intelligent control has emerged as one of the most active and fruitful areas of research and development. Until now, however, there has been no comprehensive text that explores the subject with focus on the design and analysis of biological and industrial applications. Intelligent Control Systems Using Soft Computing Methodologies does all that and more. Beginning with an overview of intelligent control methodologies, the contributors present the fundamentals of neural networks, supervised and unsupervised learning, and recurrent networks. They address various implementation issues, then explore design and verification of neural networks for a variety of applications, including medicine, biology, digital signal processing, object recognition, computer networking, desalination technology, and oil refinery and chemical processes. The focus then shifts to fuzzy logic, with a review of the fundamental and theoretical aspects, discussion of implementation issues, and examples of applications, including control of autonomous underwater vehicles, navigation of space vehicles, image processing, robotics, and energy management systems. The book concludes with the integration of genetic algorithms into the paradigm of soft computing methodologies, including several more industrial examples, implementation issues, and open problems and open problems related to intelligent control technology. Suitable as a textbook or a reference, Intelligent Control Systems explores recent advances in the field from both the theoretical and the practical viewpoints. It also integrates intelligent control design methodologies to give designers a set of flexible, robust controllers and provide students with a tool for solving the examples and exercises within the book.

Bio-Inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition

Bio-Inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition
Author: Patricia Melin
Publisher: Springer Science & Business Media
Total Pages: 258
Release: 2009-09-30
Genre: Computers
ISBN: 3642045154

Bio-Inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition comprises papers on diverse aspects of bio-inspired models, soft computing and hybrid intelligent systems. The articles are divided into four main parts. The first one consists of papers that propose new fuzzy and bio-inspired models to solve general problems. The second part deals with the main theme of modular neural networks in pattern recognition, which are basically papers using bio-inspired techniques. The third part contains papers that apply hybrid intelligent systems to the problem of time series analysis and prediction, while the fourth one shows papers dealing with bio-inspired models in optimization and robotics applications. An edited book in which both theoretical and application aspects are covered.

Granular Computing

Granular Computing
Author: Witold Pedrycz
Publisher: CRC Press
Total Pages: 309
Release: 2018-09-03
Genre: Computers
ISBN: 1439886873

Information granules, as encountered in natural language, are implicit in nature. To make them fully operational so they can be effectively used to analyze and design intelligent systems, information granules need to be made explicit. An emerging discipline, granular computing focuses on formalizing information granules and unifying them to create a coherent methodological and developmental environment for intelligent system design and analysis. Granular Computing: Analysis and Design of Intelligent Systems presents the unified principles of granular computing along with its comprehensive algorithmic framework and design practices. Introduces the concepts of information granules, information granularity, and granular computing Presents the key formalisms of information granules Builds on the concepts of information granules with discussion of higher-order and higher-type information granules Discusses the operational concept of information granulation and degranulation by highlighting the essence of this tandem and its quantification in terms of the associated reconstruction error Examines the principle of justifiable granularity Stresses the need to look at information granularity as an important design asset that helps construct more realistic models of real-world systems or facilitate collaborative pursuits of system modeling Highlights the concepts, architectures, and design algorithms of granular models Explores application domains where granular computing and granular models play a visible role, including pattern recognition, time series, and decision making Written by an internationally renowned authority in the field, this innovative book introduces readers to granular computing as a new paradigm for the analysis and synthesis of intelligent systems. It is a valuable resource for those engaged in research and practical developments in computer, electrical, industrial, manufacturing, and biomedical engineering. Building from fundamentals, the book is also suitable for readers from nontechnical disciplines where information granules assume a visible position.

Soft Computing for Hybrid Intelligent Systems

Soft Computing for Hybrid Intelligent Systems
Author: Oscar Castillo
Publisher: Springer Science & Business Media
Total Pages: 440
Release: 2008-08-25
Genre: Computers
ISBN: 3540708111

We describe in this book, new methods and applications of hybrid intelligent systems using soft computing techniques. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and evolutionary al- rithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of intelligent control, which are basically papers that use hybrid systems to solve particular problems of control. The second part contains papers with the main theme of pattern recognition, which are basically papers using soft computing techniques for achieving pattern recognition in different applications. The third part contains papers with the themes of intelligent agents and social systems, which are papers that apply the ideas of agents and social behavior to solve real-world problems. The fourth part contains papers that deal with the hardware implementation of intelligent systems for solving particular problems. The fifth part contains papers that deal with modeling, simulation and optimization for real-world applications.

MICAI 2009: Advances in Artificial Intelligence

MICAI 2009: Advances in Artificial Intelligence
Author: Arturo Hernández Aguirre
Publisher: Springer Science & Business Media
Total Pages: 759
Release: 2009-10-26
Genre: Computers
ISBN: 3642052576

This book constitutes the refereed proceedings of the 8th Mexican International Conference on Artificial Intelligence, MICAI 2009, held in Guanajuato, Mexico, in November 2009. The 63 revised full papers presented together with one invited talk were carefully reviewed and selected from 215 submissions. The papers are organized in topical sections on logic and reasoning, ontologies, knowledge management and knowledge-based systems, uncertainty and probabilistic reasoning, natural language processing, data mining, machine learning, pattern recognition, computer vision and image processing, robotics, planning and scheduling, fuzzy logic, neural networks, intelligent tutoring systems, bioinformatics and medical applications, hybrid intelligent systems and evolutionary algorithms.

Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization

Design of Intelligent Systems Based on Fuzzy Logic, Neural Networks and Nature-Inspired Optimization
Author: Patricia Melin
Publisher: Springer
Total Pages: 612
Release: 2015-06-12
Genre: Technology & Engineering
ISBN: 3319177478

This book presents recent advances on the design of intelligent systems based on fuzzy logic, neural networks and nature-inspired optimization and their application in areas such as, intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. The book is organized in eight main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of theoretical aspects of fuzzy logic, which basically consists of papers that propose new concepts and algorithms based on fuzzy systems. The second part contains papers with the main theme of neural networks theory, which are basically papers dealing with new concepts and algorithms in neural networks. The third part contains papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The fourth part contains papers describing new nature-inspired optimization algorithms. The fifth part presents diverse applications of nature-inspired optimization algorithms. The sixth part contains papers describing new optimization algorithms. The seventh part contains papers describing applications of fuzzy logic in diverse areas, such as time series prediction and pattern recognition. Finally, the eighth part contains papers that present enhancements to meta-heuristics based on fuzzy logic techniques.

Type-2 Fuzzy Logic: Theory and Applications

Type-2 Fuzzy Logic: Theory and Applications
Author: Oscar Castillo
Publisher: Springer Science & Business Media
Total Pages: 252
Release: 2008-02-20
Genre: Mathematics
ISBN: 3540762833

This book describes new methods for building intelligent systems using type-2 fuzzy logic and soft computing (SC) techniques. The authors extend the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can build powerful hybrid intelligent systems that can use the advantages that each technique offers. This book is intended to be a major reference tool and can be used as a textbook.