Applied Machine Learning for Smart Data Analysis

Applied Machine Learning for Smart Data Analysis
Author: Nilanjan Dey
Publisher: CRC Press
Total Pages: 225
Release: 2019-05-20
Genre: Computers
ISBN: 0429804571

The book focuses on how machine learning and the Internet of Things (IoT) has empowered the advancement of information driven arrangements including key concepts and advancements. Ontologies that are used in heterogeneous IoT environments have been discussed including interpretation, context awareness, analyzing various data sources, machine learning algorithms and intelligent services and applications. Further, it includes unsupervised and semi-supervised machine learning techniques with study of semantic analysis and thorough analysis of reviews. Divided into sections such as machine learning, security, IoT and data mining, the concepts are explained with practical implementation including results. Key Features Follows an algorithmic approach for data analysis in machine learning Introduces machine learning methods in applications Address the emerging issues in computing such as deep learning, machine learning, Internet of Things and data analytics Focuses on machine learning techniques namely unsupervised and semi-supervised for unseen and seen data sets Case studies are covered relating to human health, transportation and Internet applications

Applied Machine Learning for Smart Data Analysis

Applied Machine Learning for Smart Data Analysis
Author: Mohd. Shafi Pathan
Publisher: CRC Press
Total Pages: 225
Release: 2019
Genre: Computers
ISBN: 9780429440953

The book focuses on how machine learning and the Internet of Things (IoT) has empowered the advancement of information driven arrangements including key concepts and advancements. Ontologies that are used in heterogeneous IoT environments have been discussed including interpretation, context awareness, analyzing various data sources, machine learning algorithms and intelligent services and applications. Further, it includes unsupervised and semi-supervised machine learning techniques with study of semantic analysis and thorough analysis of reviews. Divided into sections such as machine learning, security, IoT and data mining, the concepts are explained with practical implementation including results. Key Features Follows an algorithmic approach for data analysis in machine learning Introduces machine learning methods in applications Address the emerging issues in computing such as deep learning, machine learning, Internet of Things and data analytics Focuses on machine learning techniques namely unsupervised and semi-supervised for unseen and seen data sets Case studies are covered relating to human health, transportation and Internet applications

Intelligent Data Analysis

Intelligent Data Analysis
Author: Michael R. Berthold
Publisher: Springer
Total Pages: 515
Release: 2007-06-07
Genre: Computers
ISBN: 3540486259

This second and revised edition contains a detailed introduction to the key classes of intelligent data analysis methods. The twelve coherently written chapters by leading experts provide complete coverage of the core issues. The first half of the book is devoted to the discussion of classical statistical issues. The following chapters concentrate on machine learning and artificial intelligence, rule induction methods, neural networks, fuzzy logic, and stochastic search methods. The book concludes with a chapter on visualization and an advanced overview of IDA processes.

Applied Intelligent Decision Making in Machine Learning

Applied Intelligent Decision Making in Machine Learning
Author: Himansu Das
Publisher: CRC Press
Total Pages: 263
Release: 2020-11-18
Genre: Computers
ISBN: 1000208540

The objective of this edited book is to share the outcomes from various research domains to develop efficient, adaptive, and intelligent models to handle the challenges related to decision making. It incorporates the advances in machine intelligent techniques such as data streaming, classification, clustering, pattern matching, feature selection, and deep learning in the decision-making process for several diversified applications such as agriculture, character recognition, landslide susceptibility, recommendation systems, forecasting air quality, healthcare, exchange rate prediction, and image dehazing. It also provides a premier interdisciplinary platform for scientists, researchers, practitioners, and educators to share their thoughts in the context of recent innovations, trends, developments, practical challenges, and advancements in the field of data mining, machine learning, soft computing, and decision science. It also focuses on the usefulness of applied intelligent techniques in the decision-making process in several aspects. To address these objectives, this edited book includes a dozen chapters contributed by authors from around the globe. The authors attempt to solve these complex problems using several intelligent machine-learning techniques. This allows researchers to understand the mechanism needed to harness the decision-making process using machine-learning techniques for their own respective endeavors.

Machine Learning

Machine Learning
Author: V.K. Jain
Publisher: KHANNA PUBLISHING HOUSE
Total Pages: 352
Release:
Genre: Computers
ISBN: 9386173662

Machine Learning employs techniques and theories drawn from many fields within the broad areas of mathematics, statistics, information science, and computer science, in particular from the sud-domains of machine learning, classification, cluster analysis, data mining, database, and visualization. Machine learning is perhaps the hottest thing in Silicon Valley right now, especially deep learning. We have Google's class on Tensor Flow, which teaches you everything you need to know to work in Silicon Valley's top companies. The reason why it is so hot is because it can take over many repetitive, mindless tasks. It'll make doctor better doctors, and lawyers better lawyers and it makes cars drive themselves. For example, when you're booking a taxi, you're shown how much the trip would cost. Or when you're on the trip, you're shown the path the taxi would take to reach your destination. While booking a ride on Uber, you're always told the amount of time the trip would take and how much it would cost. All of that, is Machine Learning! The overall goal of this book "Machine Learning" is to provide a broad understanding of various faces of Machine Learning environment in an integrated manner. It covers the syllabi of all technical universities in India and aboard. The first edition of this book is also been awarded by AICTE and placed in AICTE's latest Model Curriculum in Engineering & Technology as well as Emerging Technology.

Machine Learning and Deep Learning in Real-Time Applications

Machine Learning and Deep Learning in Real-Time Applications
Author: Mahrishi, Mehul
Publisher: IGI Global
Total Pages: 344
Release: 2020-04-24
Genre: Computers
ISBN: 1799830977

Artificial intelligence and its various components are rapidly engulfing almost every professional industry. Specific features of AI that have proven to be vital solutions to numerous real-world issues are machine learning and deep learning. These intelligent agents unlock higher levels of performance and efficiency, creating a wide span of industrial applications. However, there is a lack of research on the specific uses of machine/deep learning in the professional realm. Machine Learning and Deep Learning in Real-Time Applications provides emerging research exploring the theoretical and practical aspects of machine learning and deep learning and their implementations as well as their ability to solve real-world problems within several professional disciplines including healthcare, business, and computer science. Featuring coverage on a broad range of topics such as image processing, medical improvements, and smart grids, this book is ideally designed for researchers, academicians, scientists, industry experts, scholars, IT professionals, engineers, and students seeking current research on the multifaceted uses and implementations of machine learning and deep learning across the globe.

Machine Learning and Its Applications

Machine Learning and Its Applications
Author: PETER. WLODARCZAK
Publisher: CRC Press
Total Pages: 188
Release: 2021-06-30
Genre:
ISBN: 9781032086774

In recent years, machine learning has gained a lot of interest. Due to the advances in processor technology and the availability of large amounts of data, machine learning techniques have provided astounding results in areas such as object recognition or natural language processing. New approaches, e.g. deep learning, have provided groundbreaking outcomes in fields such as multimedia mining or voice recognition. Machine learning is now used in virtually every domain and deep learning algorithms are present in many devices such as smartphones, cars, drones, healthcare equipment, or smart home devices. The Internet, cloud computing and the Internet of Things produce a tsunami of data and machine learning provides the methods to effectively analyze the data and discover actionable knowledge. This book describes the most common machine learning techniques such as Bayesian models, support vector machines, decision tree induction, regression analysis, and recurrent and convolutional neural networks. It first gives an introduction into the principles of machine learning. It then covers the basic methods including the mathematical foundations. The biggest part of the book provides common machine learning algorithms and their applications. Finally, the book gives an outlook into some of the future developments and possible new research areas of machine learning and artificial intelligence in general. This book is meant to be an introduction into machine learning. It does not require prior knowledge in this area. It covers some of the basic mathematical principle but intends to be understandable even without a background in mathematics. It can be read chapter wise and intends to be comprehensible, even when not starting in the beginning. Finally, it also intends to be a reference book. Key Features: Describes real world problems that can be solved using Machine Learning Provides methods for directly applying Machine Learning techniques to concrete real world problems Demonstrates how to apply Machine Learning techniques using different frameworks such as TensorFlow, MALLET, R

Human Communication Technology

Human Communication Technology
Author: R. Anandan
Publisher: John Wiley & Sons
Total Pages: 498
Release: 2021-10-25
Genre: Computers
ISBN: 1119752159

HUMAN COMMUNICATION TECHNOLOGY A unique book explaining how perception, location, communication, cognition, computation, networking, propulsion, integration of federated Internet of Robotic Things (IoRT) and digital platforms are important components of new-generation IoRT applications through continuous, real-time interaction with the world. The 16 chapters in this book discuss new architectures, networking paradigms, trustworthy structures, and platforms for the integration of applications across various business and industrial domains that are needed for the emergence of intelligent things (static or mobile) in collaborative autonomous fleets. These new apps speed up the progress of paradigms of autonomous system design and the proliferation of the Internet of Robotic Things (IoRT). Collaborative robotic things can communicate with other things in the IoRT, learn independently, interact securely with the world, people, and other things, and acquire characteristics that make them self-maintaining, self-aware, self-healing, and fail-safe operational. Due to the ubiquitous nature of collaborative robotic things, the IoRT, which binds together the sensors and the objects of robotic things, is gaining popularity. Therefore, the information contained in this book will provide readers with a better understanding of this interdisciplinary field. Audience Researchers in various fields including computer science, IoT, artificial intelligence, machine learning, and big data analytics.

Machine Learning and IoT for Intelligent Systems and Smart Applications

Machine Learning and IoT for Intelligent Systems and Smart Applications
Author: Madhumathy P
Publisher: CRC Press
Total Pages: 243
Release: 2021-11-17
Genre: Computers
ISBN: 1000484963

The fusion of AI and IoT enables the systems to be predictive, prescriptive, and autonomous, and this convergence has evolved the nature of emerging applications from being assisted to augmented, and ultimately to autonomous intelligence. This book discusses algorithmic applications in the field of machine learning and IoT with pertinent applications. It further discusses challenges and future directions in the machine learning area and develops understanding of its role in technology, in terms of IoT security issues. Pertinent applications described include speech recognition, medical diagnosis, optimizations, predictions, and security aspects. Features: Focuses on algorithmic and practical parts of the artificial intelligence approaches in IoT applications. Discusses supervised and unsupervised machine learning for IoT data and devices. Presents an overview of the different algorithms related to Machine learning and IoT. Covers practical case studies on industrial and smart home automation. Includes implementation of AI from case studies in personal and industrial IoT. This book aims at Researchers and Graduate students in Computer Engineering, Networking Communications, Information Science Engineering, and Electrical Engineering.