Applied Mathematics for Physical Chemistry

Applied Mathematics for Physical Chemistry
Author: James R. Barrante
Publisher: Waveland Press
Total Pages: 256
Release: 2016-02-10
Genre: Science
ISBN: 147863300X

By the time chemistry students are ready to study physical chemistry, they’ve completed mathematics courses through calculus. But a strong background in mathematics doesn’t necessarily equate to knowledge of how to apply that mathematics to solving physicochemical problems. In addition, in-depth understanding of modern concepts in physical chemistry requires knowledge of mathematical concepts and techniques beyond introductory calculus, such as differential equations, Fourier series, and Fourier transforms. This results in many physical chemistry instructors spending valuable lecture time teaching mathematics rather than chemistry. Barrante presents both basic and advanced mathematical techniques in the context of how they apply to physical chemistry. Many problems at the end of each chapter test students’ mathematical knowledge. Designed and priced to accompany traditional core textbooks in physical chemistry, Applied Mathematics for Physical Chemistry provides students with the tools essential for answering questions in thermodynamics, atomic/molecular structure, spectroscopy, and statistical mechanics.

Mathematics for Physical Chemistry

Mathematics for Physical Chemistry
Author: Robert G. Mortimer
Publisher: Elsevier
Total Pages: 406
Release: 2005-06-10
Genre: Science
ISBN: 0080492886

Mathematics for Physical Chemistry, Third Edition, is the ideal text for students and physical chemists who want to sharpen their mathematics skills. It can help prepare the reader for an undergraduate course, serve as a supplementary text for use during a course, or serve as a reference for graduate students and practicing chemists. The text concentrates on applications instead of theory, and, although the emphasis is on physical chemistry, it can also be useful in general chemistry courses. The Third Edition includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The first ten chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. The final chapter discusses mathematical topics needed in the analysis of experimental data. - Numerous examples and problems interspersed throughout the presentations - Each extensive chapter contains a preview, objectives, and summary - Includes topics not found in similar books, such as a review of general algebra and an introduction to group theory - Provides chemistry specific instruction without the distraction of abstract concepts or theoretical issues in pure mathematics

Applied Mathematics for Physical Chemistry

Applied Mathematics for Physical Chemistry
Author: James R. Barrante
Publisher:
Total Pages: 246
Release: 1998
Genre: Mathematics
ISBN:

1 Coordinate Systems 2 Functions and Graphs 3 Logarithms 4 Differential Calculus 5 Integral Calculus 6 Differential Equations 7 Infinite Series 8 Scalars and Vectors 9 Matrices and Determinants 10 Operators 11 Numerical Methods and the Use of the Computer 12 Mathematical Methods in the Laboratory Appendices Answers Index.

Mathematics for Physical Science and Engineering

Mathematics for Physical Science and Engineering
Author: Frank E. Harris
Publisher: Academic Press
Total Pages: 787
Release: 2014-05-24
Genre: Mathematics
ISBN: 0128010495

Mathematics for Physical Science and Engineering is a complete text in mathematics for physical science that includes the use of symbolic computation to illustrate the mathematical concepts and enable the solution of a broader range of practical problems. This book enables professionals to connect their knowledge of mathematics to either or both of the symbolic languages Maple and Mathematica. The book begins by introducing the reader to symbolic computation and how it can be applied to solve a broad range of practical problems. Chapters cover topics that include: infinite series; complex numbers and functions; vectors and matrices; vector analysis; tensor analysis; ordinary differential equations; general vector spaces; Fourier series; partial differential equations; complex variable theory; and probability and statistics. Each important concept is clarified to students through the use of a simple example and often an illustration. This book is an ideal reference for upper level undergraduates in physical chemistry, physics, engineering, and advanced/applied mathematics courses. It will also appeal to graduate physicists, engineers and related specialties seeking to address practical problems in physical science. - Clarifies each important concept to students through the use of a simple example and often an illustration - Provides quick-reference for students through multiple appendices, including an overview of terms in most commonly used applications (Mathematica, Maple) - Shows how symbolic computing enables solving a broad range of practical problems

Mathematics for Physical Chemistry: Opening Doors

Mathematics for Physical Chemistry: Opening Doors
Author: Donald A. McQuarrie
Publisher: University Science Books
Total Pages: 372
Release: 2008-07-21
Genre: Mathematics
ISBN: 9781891389566

This text provides students with concise reviews of mathematical topics that are used throughout physical chemistry. By reading these reviews before the mathematics is applied to physical chemical problems, a student will be able to spend less time worrying about the math and more time learning the physical chemistry.

Mathematical Methods for Physical and Analytical Chemistry

Mathematical Methods for Physical and Analytical Chemistry
Author: David Z. Goodson
Publisher: John Wiley & Sons
Total Pages: 408
Release: 2011-11-14
Genre: Science
ISBN: 1118135172

Mathematical Methods for Physical and Analytical Chemistry presents mathematical and statistical methods to students of chemistry at the intermediate, post-calculus level. The content includes a review of general calculus; a review of numerical techniques often omitted from calculus courses, such as cubic splines and Newton’s method; a detailed treatment of statistical methods for experimental data analysis; complex numbers; extrapolation; linear algebra; and differential equations. With numerous example problems and helpful anecdotes, this text gives chemistry students the mathematical knowledge they need to understand the analytical and physical chemistry professional literature.

The Chemistry Maths Book

The Chemistry Maths Book
Author: Erich Steiner
Publisher: Oxford University Press
Total Pages: 681
Release: 2008
Genre: Mathematics
ISBN: 9780199205356

"Topics are organized into three parts: algebra, calculus, differential equations, and expansions in series; vectors, determinants and matrices; and numerical analysis and statistics. The extensive use of examples illustrates every important concept and method in the text, and are used to demonstrate applications of the mathematics in chemistry and several basic concepts in physics. The exercises at the end of each chapter, are an essential element of the development of the subject, and have been designed to give students a working understanding of the material in the text."--BOOK JACKET.

Mathematical Physical Chemistry

Mathematical Physical Chemistry
Author: Shu Hotta
Publisher: Springer
Total Pages: 629
Release: 2018-01-23
Genre: Science
ISBN: 9811076715

This book introduces basic concepts of mathematical physics to chemists. Many textbooks and monographs of mathematical physics may appear daunting to them. Unlike other, related books, however, this one contains a practical selection of material, particularly for graduate and undergraduate students majoring in chemistry. The book first describes quantum mechanics and electromagnetism, with the relation between the two being emphasized. Although quantum mechanics covers a broad field in modern physics, the author focuses on a hydrogen(like) atom and a harmonic oscillator with regard to the operator method. This approach helps chemists understand the basic concepts of quantum mechanics aided by their intuitive understanding without abstract argument, as chemists tend to think of natural phenomena and other factors intuitively rather than only logically. The study of light propagation, reflection, and transmission in dielectric media is of fundamental importance. This book explains these processes on the basis of Maxwell equations. The latter half of the volume deals with mathematical physics in terms of vectors and their transformation in a vector space. Finally, as an example of chemical applications, quantum chemical treatment of methane is introduced, including a basic but essential explanation of Green functions and group theory. Methodology developed by the author will also prove to be useful to physicists.