Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems

Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems
Author: Aparna Kumari
Publisher: Elsevier
Total Pages: 552
Release: 2024-05-23
Genre: Technology & Engineering
ISBN: 0443238154

Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems: Fundamentals, Technologies, and Solutions is an essential reference for energy researchers, graduate students and engineers who aim to understand the opportunities offered by artificial intelligence for the integration of electric vehicles into smart grids. This book begins by building foundational knowledge for the reader, covering the essentials of artificial intelligence and its applications for electric vehicles in a clear and holistic manner. Next, it breaks down two essential areas of application in more detail: energy management (from to energy harvesting to demand response and complex forecasting), and market strategies (including peer-to-peer, vehicle-to-vehicle, and vehicle-to-everything trading, plus the cyber-security implications). A final part provides detailed case studies and close consideration of challenges, including code and data sets for replication of techniques. Providing a clear pathway from fundamentals to practical implementation, Artificial Intelligence-Empowered Modern Electric Vehicles in Smart Grid Systems will provide multidisciplinary guidance for implementing this cutting-edge technology in the energy systems of the future. - Supports fundamental understanding of artificial intelligence and its opportunities for energy system specialists - Collects the real-world experiences of global experts - Enables practical implementation of artificial intelligence strategies that support renewable energy integration across energy systems, markets, and grids

IoT and Analytics in Renewable Energy Systems (Volume 1)

IoT and Analytics in Renewable Energy Systems (Volume 1)
Author: O.V. Gnana Swathika
Publisher: CRC Press
Total Pages: 471
Release: 2023-08-11
Genre: Computers
ISBN: 1000909794

Smart grid technologies include sensing and measurement technologies, advanced components aided with communications and control methods along with improved interfaces and decision support systems. Smart grid techniques support the extensive inclusion of clean renewable generation in power systems. Smart grid use also promotes energy saving in power systems. Cyber security objectives for the smart grid are availability, integrity and confidentiality. Five salient features of this book are as follows: AI and IoT in improving resilience of smart energy infrastructure IoT, smart grids and renewable energy: an economic approach AI and ML towards sustainable solar energy Electrical vehicles and smart grid Intelligent condition monitoring for solar and wind energy systems

Smart Grid and Enabling Technologies

Smart Grid and Enabling Technologies
Author: Shady S. Refaat
Publisher: John Wiley & Sons
Total Pages: 516
Release: 2021-08-16
Genre: Science
ISBN: 1119422310

SMART GRID AND ENABLING TECHNOLOGIES Discover foundational topics in smart grid technology as well as an exploration of the current and future state of the industry As the relationship between fossil fuel use and climate change becomes ever clearer, the search is on for reliable, renewable and less harmful sources of energy. Sometimes called the “electronet” or the “energy Internet,” smart grids promise to integrate renewable energy, information, and communication technologies with the existing electrical grid and deliver electricity more efficiently and reliably. Smart Grid and Enabling Technologies delivers a complete vision of smart grid technology and applications, including foundational and fundamental technologies, the technology that enables smart grids, the current state of the industry, and future trends in smart energy. The book offers readers thorough discussions of modern smart grid technology, including advanced metering infrastructure, net zero energy buildings, and communication, data management, and networks in smart grids. The accomplished authors also discuss critical challenges and barriers facing the smart grid industry as well as trends likely to be of importance in its future development. Readers will also benefit from the inclusion of: A thorough introduction to smart grid architecture, including traditional grids, the fundamentals of electric power, definitions and classifications of smart grids, and the components of smart grid technology An exploration of the opportunities and challenges posed by renewable energy integration Practical discussions of power electronics in the smart grid, including power electronics converters for distributed generation, flexible alternating current transmission systems, and high voltage direct current transmission systems An analysis of distributed generation Perfect for scientists, researchers, engineers, graduate students, and senior undergraduate students studying and working with electrical power systems and communication systems. Smart Grid and Enabling Technologies will also earn a place in the libraries of economists, government planners and regulators, policy makers, and energy stakeholders working in the smart grid field.

Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies

Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies
Author: Krishna Kumar
Publisher: Academic Press
Total Pages: 418
Release: 2022-03-18
Genre: Technology & Engineering
ISBN: 0323914284

Sustainable Developments by Artificial Intelligence and Machine Learning for Renewable Energies analyzes the changes in this energy generation shift, including issues of grid stability with variability in renewable energy vs. traditional baseload energy generation. Providing solutions to current critical environmental, economic and social issues, this book comprises various complex nonlinear interactions among different parameters to drive the integration of renewable energy into the grid. It considers how artificial intelligence and machine learning techniques are being developed to produce more reliable energy generation to optimize system performance and provide sustainable development. As the use of artificial intelligence to revolutionize the energy market and harness the potential of renewable energy is essential, this reference provides practical guidance on the application of renewable energy with AI, along with machine learning techniques and capabilities in design, modeling and for forecasting performance predictions for the optimization of renewable energy systems. It is targeted at researchers, academicians and industry professionals working in the field of renewable energy, AI, machine learning, grid Stability and energy generation. - Covers the best-performing methods and approaches for designing renewable energy systems with AI integration in a real-time environment - Gives advanced techniques for monitoring current technologies and how to efficiently utilize the energy grid spectrum - Addresses the advanced field of renewable generation, from research, impact and idea development of new applications

The Smart Grid

The Smart Grid
Author: Clark W. Gellings
Publisher: CRC Press
Total Pages: 182
Release: 2020-12-17
Genre: Business & Economics
ISBN: 1000355314

The power system has often been cited as the greatest and most complex machine ever built, yet it is predominantly a mechanical system. Technologies and intelligent systems are now available that can significantly enhance the overall functionality of power distribution and make it ready to meet the needs of the 21st century. This book explains how sensors, communications technologies, computational ability, control, and feedback mechanisms can be effectively combined to create this new, continually adjusting "smart grid" system. It provides an understanding of both IntelliGridSM architecture and EnergyPortSM as well as how to integrate intelligent systems to achieve the goals of reliability, cost containment, energy efficiency in power production and delivery, and end-use energy efficiency.

Artificial Intelligence in IoT

Artificial Intelligence in IoT
Author: Fadi Al-Turjman
Publisher: Springer
Total Pages: 235
Release: 2019-02-12
Genre: Technology & Engineering
ISBN: 3030041107

This book provides an insight into IoT intelligence in terms of applications and algorithmic challenges. The book is dedicated to addressing the major challenges in realizing the artificial intelligence in IoT-based applications including challenges that vary from cost and energy efficiency to availability to service quality in multidisciplinary fashion. The aim of this book is hence to focus on both the algorithmic and practical parts of the artificial intelligence approaches in IoT applications that are enabled and supported by wireless sensor networks and cellular networks. Targeted readers are from varying disciplines who are interested in implementing the smart planet/environments vision via intelligent wireless/wired enabling technologies. Includes the most up-to-date research and applications related to IoT artificial intelligence (AI); Provides new and innovative operational ideas regarding the IoT artificial intelligence that help advance the telecommunications industry; Presents AI challenges facing the IoT scientists and provides potential ways to solve them in critical daily life issues.

Green Internet of Things and Machine Learning

Green Internet of Things and Machine Learning
Author: Roshani Raut
Publisher: John Wiley & Sons
Total Pages: 279
Release: 2022-01-10
Genre: Computers
ISBN: 1119793122

Health Economics and Financing Encapsulates different case studies where green-IOT and machine learning can be used for making significant progress towards improvising the quality of life and sustainable environment. The Internet of Things (IoT) is an evolving idea which is responsible for connecting billions of devices that acquire, perceive, and communicate data from their surroundings. Because this transmission of data uses significant energy, improving energy efficiency in IOT devices is a significant topic for research. The green internet of things (G-IoT) makes it possible for IoT devices to use less energy since intelligent processing and analysis are fundamental to constructing smart IOT applications with large data sets. Machine learning (ML) algorithms that can predict sustainable energy consumption can be used to prepare guidelines to make IoT device implementation easier. Green Internet of Things and Machine Learning lays the foundation of in-depth analysis of principles of Green-Internet of Things (G-IoT) using machine learning. It outlines various green ICT technologies, explores the potential towards diverse real-time areas, as well as highlighting various challenges and obstacles towards the implementation of G-IoT in the real world. Also, this book provides insights on how the machine learning and green IOT will impact various applications: It covers the Green-IOT and ML-based smart computing, ML techniques for reducing energy consumption in IOT devices, case studies of G-IOT and ML in the agricultural field, smart farming, smart transportation, banking industry and healthcare. Audience The book will be helpful for research scholars and researchers in the fields of computer science and engineering, information technology, electronics and electrical engineering. Industry experts, particularly in R&D divisions, can use this book as their problem-solving guide.

Multimedia Big Data Computing for IoT Applications

Multimedia Big Data Computing for IoT Applications
Author: Sudeep Tanwar
Publisher: Springer
Total Pages: 477
Release: 2019-07-17
Genre: Technology & Engineering
ISBN: 9811387591

This book considers all aspects of managing the complexity of Multimedia Big Data Computing (MMBD) for IoT applications and develops a comprehensive taxonomy. It also discusses a process model that addresses a number of research challenges associated with MMBD, such as scalability, accessibility, reliability, heterogeneity, and Quality of Service (QoS) requirements, presenting case studies to demonstrate its application. Further, the book examines the layered architecture of MMBD computing and compares the life cycle of both big data and MMBD. Written by leading experts, it also includes numerous solved examples, technical descriptions, scenarios, procedures, and algorithms.