Big Data Analytics for Sustainable Computing

Big Data Analytics for Sustainable Computing
Author: Haldorai, Anandakumar
Publisher: IGI Global
Total Pages: 285
Release: 2019-09-20
Genre: Computers
ISBN: 1522597522

Big data consists of data sets that are too large and complex for traditional data processing and data management applications. Therefore, to obtain the valuable information within the data, one must use a variety of innovative analytical methods, such as web analytics, machine learning, and network analytics. As the study of big data becomes more popular, there is an urgent demand for studies on high-level computational intelligence and computing services for analyzing this significant area of information science. Big Data Analytics for Sustainable Computing is a collection of innovative research that focuses on new computing and system development issues in emerging sustainable applications. Featuring coverage on a wide range of topics such as data filtering, knowledge engineering, and cognitive analytics, this publication is ideally designed for data scientists, IT specialists, computer science practitioners, computer engineers, academicians, professionals, and students seeking current research on emerging analytical techniques and data processing software.

Data Science Applied to Sustainability Analysis

Data Science Applied to Sustainability Analysis
Author: Jennifer Dunn
Publisher: Elsevier
Total Pages: 312
Release: 2021-05-11
Genre: Science
ISBN: 0128179775

Data Science Applied to Sustainability Analysis focuses on the methodological considerations associated with applying this tool in analysis techniques such as lifecycle assessment and materials flow analysis. As sustainability analysts need examples of applications of big data techniques that are defensible and practical in sustainability analyses and that yield actionable results that can inform policy development, corporate supply chain management strategy, or non-governmental organization positions, this book helps answer underlying questions. In addition, it addresses the need of data science experts looking for routes to apply their skills and knowledge to domain areas. - Presents data sources that are available for application in sustainability analyses, such as market information, environmental monitoring data, social media data and satellite imagery - Includes considerations sustainability analysts must evaluate when applying big data - Features case studies illustrating the application of data science in sustainability analyses

Machine Intelligence and Data Analytics for Sustainable Future Smart Cities

Machine Intelligence and Data Analytics for Sustainable Future Smart Cities
Author: Uttam Ghosh
Publisher: Springer Nature
Total Pages: 411
Release: 2021-05-31
Genre: Technology & Engineering
ISBN: 3030720659

This book presents the latest advances in computational intelligence and data analytics for sustainable future smart cities. It focuses on computational intelligence and data analytics to bring together the smart city and sustainable city endeavors. It also discusses new models, practical solutions and technological advances related to the development and the transformation of cities through machine intelligence and big data models and techniques. This book is helpful for students and researchers as well as practitioners.

Big Data Science and Analytics for Smart Sustainable Urbanism

Big Data Science and Analytics for Smart Sustainable Urbanism
Author: Simon Elias Bibri
Publisher:
Total Pages: 337
Release: 2019
Genre: Big data
ISBN: 9783030173135

We are living at the dawn of what has been termed 'the fourth paradigm of science, ' a scientific revolution that is marked by both the emergence of big data science and analytics, and by the increasing adoption of the underlying technologies in scientific and scholarly research practices. Everything about science development or knowledge production is fundamentally changing thanks to the ever-increasing deluge of data. This is the primary fuel of the new age, which powerful computational processes or analytics algorithms are using to generate valuable knowledge for enhanced decision-making, and deep insights pertaining to a wide variety of practical uses and applications. This book addresses the complex interplay of the scientific, technological, and social dimensions of the city, and what it entails in terms of the systemic implications for smart sustainable urbanism. In concrete terms, it explores the interdisciplinary and transdisciplinary field of smart sustainable urbanism and the unprecedented paradigmatic shifts and practical advances it is undergoing in light of big data science and analytics. This new era of science and technology embodies an unprecedentedly transformative and constitutive power-manifested not only in the form of revolutionizing science and transforming knowledge, but also in advancing social practices, producing new discourses, catalyzing major shifts, and fostering societal transitions. Of particular relevance, it is instigating a massive change in the way both smart cities and sustainable cities are studied and understood, and in how they are planned, designed, operated, managed, and governed in the face of urbanization. This relates to what has been dubbed data-driven smart sustainable urbanism, an emerging approach based on a computational understanding of city systems and processes that reduces urban life to logical and algorithmic rules and procedures, while also harnessing urban big data to provide a more holistic and integrated view or synoptic intelligence of the city. This is increasingly being directed towards improving, advancing, and maintaining the contribution of both sustainable cities and smart cities to the goals of sustainable development. This timely and multifaceted book is aimed at a broad readership. As such, it will appeal to urban scientists, data scientists, urbanists, planners, engineers, designers, policymakers, philosophers of science, and futurists, as well as all readers interested in an overview of the pivotal role of big data science and analytics in advancing every academic discipline and social practice concerned with data-intensive science and its application, particularly in relation to sustainability.

Big-Data Analytics for Cloud, IoT and Cognitive Computing

Big-Data Analytics for Cloud, IoT and Cognitive Computing
Author: Kai Hwang
Publisher: John Wiley & Sons
Total Pages: 432
Release: 2017-03-17
Genre: Computers
ISBN: 1119247292

The definitive guide to successfully integrating social, mobile, Big-Data analytics, cloud and IoT principles and technologies The main goal of this book is to spur the development of effective big-data computing operations on smart clouds that are fully supported by IoT sensing, machine learning and analytics systems. To that end, the authors draw upon their original research and proven track record in the field to describe a practical approach integrating big-data theories, cloud design principles, Internet of Things (IoT) sensing, machine learning, data analytics and Hadoop and Spark programming. Part 1 focuses on data science, the roles of clouds and IoT devices and frameworks for big-data computing. Big data analytics and cognitive machine learning, as well as cloud architecture, IoT and cognitive systems are explored, and mobile cloud-IoT-interaction frameworks are illustrated with concrete system design examples. Part 2 is devoted to the principles of and algorithms for machine learning, data analytics and deep learning in big data applications. Part 3 concentrates on cloud programming software libraries from MapReduce to Hadoop, Spark and TensorFlow and describes business, educational, healthcare and social media applications for those tools. The first book describing a practical approach to integrating social, mobile, analytics, cloud and IoT (SMACT) principles and technologies Covers theory and computing techniques and technologies, making it suitable for use in both computer science and electrical engineering programs Offers an extremely well-informed vision of future intelligent and cognitive computing environments integrating SMACT technologies Fully illustrated throughout with examples, figures and approximately 150 problems to support and reinforce learning Features a companion website with an instructor manual and PowerPoint slides www.wiley.com/go/hwangIOT Big-Data Analytics for Cloud, IoT and Cognitive Computing satisfies the demand among university faculty and students for cutting-edge information on emerging intelligent and cognitive computing systems and technologies. Professionals working in data science, cloud computing and IoT applications will also find this book to be an extremely useful working resource.

Big Data Analysis for Green Computing

Big Data Analysis for Green Computing
Author: Rohit Sharma
Publisher: CRC Press
Total Pages: 187
Release: 2021-10-28
Genre: Computers
ISBN: 1000481778

This book focuses on big data in business intelligence, data management, machine learning, cloud computing, and smart cities. It also provides an interdisciplinary platform to present and discuss recent innovations, trends, and concerns in the fields of big data and analytics. Big Data Analysis for Green Computing: Concepts and Applications presents the latest technologies and covers the major challenges, issues, and advances of big data and data analytics in green computing. It explores basic as well as high-level concepts. It also includes the use of machine learning using big data and discusses advanced system implementation for smart cities. The book is intended for business and management educators, management researchers, doctoral scholars, university professors, policymakers, and higher academic research organizations.

Big Data Computing

Big Data Computing
Author: Rajendra Akerkar
Publisher: CRC Press
Total Pages: 562
Release: 2013-12-05
Genre: Business & Economics
ISBN: 1466578386

Due to market forces and technological evolution, Big Data computing is developing at an increasing rate. A wide variety of novel approaches and tools have emerged to tackle the challenges of Big Data, creating both more opportunities and more challenges for students and professionals in the field of data computation and analysis. Presenting a mix

Green Information Technology

Green Information Technology
Author: Mohammad Dastbaz
Publisher: Morgan Kaufmann
Total Pages: 348
Release: 2015-03-09
Genre: Computers
ISBN: 012801671X

We are living in the era of "Big Data" and the computing power required to deal with "Big Data" both in terms of its energy consumption and technical complexity is one of the key areas of research and development. The U.S. Environmental Protection Agency estimates that centralized computing infrastructures (data centres) currently use 7 giga watts of electricity during peak loads. This translates into about 61 billion kilowatt hours of electricity used. By the EPA's estimates, power-hungry data centres consume the annual output of 15 average-sized power plants. One of the top constraints to increasing computing power, besides the ability to cool, is simply delivering enough power to a given physical space. Green Information Technology: A Sustainable Approach offers in a single volume a broad collection of practical techniques and methodologies for designing, building and implementing a green technology strategy in any large enterprise environment, which up until now has been scattered in difficult-to-find scholarly resources. Included here is the latest information on emerging technologies and their environmental impact, how to effectively measure sustainability, discussions on sustainable hardware and software design, as well as how to use big data and cloud computing to drive efficiencies and establish a framework for sustainability in the information technology infrastructure. Written by recognized experts in both academia and industry, Green Information Technology: A Sustainable Approach is a must-have guide for researchers, computer architects, computer engineers and IT professionals with an interest in greater efficiency with less environmental impact. - Introduces the concept of using green procurement and supply chain programs in the IT infrastructure. - Discusses how to use big data to drive efficiencies and establish a framework for sustainability in the information technology infrastructure. - Explains how cloud computing can be used to consolidate corporate IT environments using large-scale shared infrastructure reducing the overall environmental impact and unlocking new efficiencies. - Provides specific use cases for Green IT such as data center energy efficiency and cloud computing sustainability and risk.

Big Data for Entrepreneurship and Sustainable Development

Big Data for Entrepreneurship and Sustainable Development
Author: Mohammed El Amine Abdelli
Publisher: CRC Press
Total Pages: 223
Release: 2021-12-09
Genre: Business & Economics
ISBN: 1000454401

This book provides insight for researchers and decision-makers on the application of data in the entrepreneurship and sustainable development sector. This book covers how Big Data for Industry 4.0 and entrepreneurship are effective in resolving business, social, and economic problems. The book discusses how entrepreneurs use Big Data to cut costs and minimize the waste of time. It offers how using Big Data can increase efficiency, enables the studying of competitors, can improve the pricing of products, increase sales and loyalty, and can ensure the right people are hired. The book presents how decision-makers can make use of Big Data to resolve economic and social problems. Analyze the development of the economy and enhance the business climate. This book is for researchers, PhD students, and entrepreneurs and can also be of interest for transforming governments as well as businesses.