Social Media Data Mining and Analytics

Social Media Data Mining and Analytics
Author: Gabor Szabo
Publisher: John Wiley & Sons
Total Pages: 352
Release: 2018-10-23
Genre: Computers
ISBN: 1118824857

Harness the power of social media to predict customer behavior and improve sales Social media is the biggest source of Big Data. Because of this, 90% of Fortune 500 companies are investing in Big Data initiatives that will help them predict consumer behavior to produce better sales results. Social Media Data Mining and Analytics shows analysts how to use sophisticated techniques to mine social media data, obtaining the information they need to generate amazing results for their businesses. Social Media Data Mining and Analytics isn't just another book on the business case for social media. Rather, this book provides hands-on examples for applying state-of-the-art tools and technologies to mine social media - examples include Twitter, Wikipedia, Stack Exchange, LiveJournal, movie reviews, and other rich data sources. In it, you will learn: The four key characteristics of online services-users, social networks, actions, and content The full data discovery lifecycle-data extraction, storage, analysis, and visualization How to work with code and extract data to create solutions How to use Big Data to make accurate customer predictions How to personalize the social media experience using machine learning Using the techniques the authors detail will provide organizations the competitive advantage they need to harness the rich data available from social media platforms.

Big Data Analytics in Cognitive Social Media and Literary Texts

Big Data Analytics in Cognitive Social Media and Literary Texts
Author: Sanjiv Sharma
Publisher: Springer
Total Pages: 0
Release: 2022-10-11
Genre: Language Arts & Disciplines
ISBN: 9789811647314

This book provides a comprehensive overview of the theory and praxis of Big Data Analytics and how these are used to extract cognition-related information from social media and literary texts. It presents analytics that transcends the borders of discipline-specific academic research and focuses on knowledge extraction, prediction, and decision-making in the context of individual, social, and national development. The content is divided into three main sections: the first of which discusses various approaches associated with Big Data Analytics, while the second addresses the security and privacy of big data in social media, and the last focuses on the literary text as the literary data in Big Data Analytics. Sharing valuable insights into the etiology behind human cognition and its reflection in social media and literary texts, the book benefits all those interested in analytics that can be applied to literature, history, philosophy, linguistics, literary theory, media & communication studies and computational/digital humanities.

Big Data Analytics Using Splunk

Big Data Analytics Using Splunk
Author: Peter Zadrozny
Publisher: Apress
Total Pages: 362
Release: 2013-08-23
Genre: Computers
ISBN: 1430257628

Big Data Analytics Using Splunk is a hands-on book showing how to process and derive business value from big data in real time. Examples in the book draw from social media sources such as Twitter (tweets) and Foursquare (check-ins). You also learn to draw from machine data, enabling you to analyze, say, web server log files and patterns of user access in real time, as the access is occurring. Gone are the days when you need be caught out by shifting public opinion or sudden changes in customer behavior. Splunk’s easy to use engine helps you recognize and react in real time, as events are occurring. Splunk is a powerful, yet simple analytical tool fast gaining traction in the fields of big data and operational intelligence. Using Splunk, you can monitor data in real time, or mine your data after the fact. Splunk’s stunning visualizations aid in locating the needle of value in a haystack of a data. Geolocation support spreads your data across a map, allowing you to drill down to geographic areas of interest. Alerts can run in the background and trigger to warn you of shifts or events as they are taking place. With Splunk you can immediately recognize and react to changing trends and shifting public opinion as expressed through social media, and to new patterns of eCommerce and customer behavior. The ability to immediately recognize and react to changing trends provides a tremendous advantage in today’s fast-paced world of Internet business. Big Data Analytics Using Splunk opens the door to an exciting world of real-time operational intelligence. Built around hands-on projects Shows how to mine social media Opens the door to real-time operational intelligence

Big Data Analytics

Big Data Analytics
Author: Mrutyunjaya Panda
Publisher: CRC Press
Total Pages: 316
Release: 2018-12-12
Genre: Business & Economics
ISBN: 1351622595

Social networking has increased drastically in recent years, resulting in an increased amount of data being created daily. Furthermore, diversity of issues and complexity of the social networks pose a challenge in social network mining. Traditional algorithm software cannot deal with such complex and vast amounts of data, necessitating the development of novel analytic approaches and tools. This reference work deals with social network aspects of big data analytics. It covers theory, practices and challenges in social networking. The book spans numerous disciplines like neural networking, deep learning, artificial intelligence, visualization, e-learning in higher education, e-healthcare, security and intrusion detection.

Social Big Data Analytics

Social Big Data Analytics
Author: Bilal Abu-Salih
Publisher: Springer Nature
Total Pages: 218
Release: 2021-03-10
Genre: Business & Economics
ISBN: 9813366524

This book focuses on data and how modern business firms use social data, specifically Online Social Networks (OSNs) incorporated as part of the infrastructure for a number of emerging applications such as personalized recommendation systems, opinion analysis, expertise retrieval, and computational advertising. This book identifies how in such applications, social data offers a plethora of benefits to enhance the decision making process. This book highlights that business intelligence applications are more focused on structured data; however, in order to understand and analyse the social big data, there is a need to aggregate data from various sources and to present it in a plausible format. Big Social Data (BSD) exhibit all the typical properties of big data: wide physical distribution, diversity of formats, non-standard data models, independently-managed and heterogeneous semantics but even further valuable with marketing opportunities. The book provides a review of the current state-of-the-art approaches for big social data analytics as well as to present dissimilar methods to infer value from social data. The book further examines several areas of research that benefits from the propagation of the social data. In particular, the book presents various technical approaches that produce data analytics capable of handling big data features and effective in filtering out unsolicited data and inferring a value. These approaches comprise advanced technical solutions able to capture huge amounts of generated data, scrutinise the collected data to eliminate unwanted data, measure the quality of the inferred data, and transform the amended data for further data analysis. Furthermore, the book presents solutions to derive knowledge and sentiments from BSD and to provide social data classification and prediction. The approaches in this book also incorporate several technologies such as semantic discovery, sentiment analysis, affective computing and machine learning. This book has additional special feature enriched with numerous illustrations such as tables, graphs and charts incorporating advanced visualisation tools in accessible an attractive display.

Data Mining Approaches for Big Data and Sentiment Analysis in Social Media

Data Mining Approaches for Big Data and Sentiment Analysis in Social Media
Author: Brij Gupta
Publisher:
Total Pages: 336
Release: 2021
Genre: Big data
ISBN: 9781799884132

"This book explores the key concepts of data mining and utilizing them on online social media platforms, offering valuable insight into data mining approaches for big data and sentiment analysis in online social media and covering many important security and other aspects and current trends"--

Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing

Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing
Author: Singh, Amandeep
Publisher: IGI Global
Total Pages: 310
Release: 2021-06-18
Genre: Business & Economics
ISBN: 1799872335

The availability of big data, low-cost commodity hardware, and new information management and analytic software have produced a unique moment in the history of data analysis. The convergence of these trends means that we have the capabilities required to analyze astonishing data sets quickly and cost-effectively for the first time in history. They represent a genuine leap forward and a clear opportunity to realize enormous gains in terms of efficiency, productivity, revenue, and profitability especially in digital marketing. Data plays a huge role in understanding valuable insights about target demographics and customer preferences. From every interaction with technology, regardless of whether it is active or passive, we are creating new data that can describe us. If analyzed correctly, these data points can explain a lot about our behavior, personalities, and life events. Companies can leverage these insights for product improvements, business strategy, and marketing campaigns to cater to the target customers. Big Data Analytics for Improved Accuracy, Efficiency, and Decision Making in Digital Marketing aids understanding of big data in terms of digital marketing for meaningful analysis of information that can improve marketing efforts and strategies using the latest digital techniques. The chapters cover a wide array of essential marketing topics and techniques, including search engine marketing, consumer behavior, social media marketing, online advertising, and how they interact with big data. This book is essential for professionals and researchers working in the field of analytics, data, and digital marketing, along with marketers, advertisers, brand managers, social media specialists, managers, sales professionals, practitioners, researchers, academicians, and students looking for the latest information on how big data is being used in digital marketing strategies.

Big Data and Social Media Analytics

Big Data and Social Media Analytics
Author: Mehmet Çakırtaş
Publisher: Springer Nature
Total Pages: 246
Release: 2021-07-05
Genre: Mathematics
ISBN: 3030670449

This edited book provides techniques which address various aspects of big data collection and analysis from social media platforms and beyond. It covers efficient compression of large networks, link prediction in hashtag graphs, visual exploration of social media data, identifying motifs in multivariate data, social media surveillance to enhance search and rescue missions, recommenders for collaborative filtering and safe travel plans to high risk destinations, analysis of cyber influence campaigns on YouTube, impact of location on business rating, bibliographical and co-authorship network analysis, and blog data analytics. All these trending topics form a major part of the state of the art in social media and big data analytics. Thus, this edited book may be considered as a valuable source for readers interested in grasping some of the most recent advancements in this high trending domain.

Human-Centered Social Media Analytics

Human-Centered Social Media Analytics
Author: Yun Fu
Publisher: Springer Science & Business Media
Total Pages: 211
Release: 2014-03-24
Genre: Computers
ISBN: 3319054910

This book provides a timely and unique survey of next-generation social computational methodologies. The text explains the fundamentals of this field, and describes state-of-the-art methods for inferring social status, relationships, preferences, intentions, personalities, needs, and lifestyles from human information in unconstrained visual data. Topics and features: includes perspectives from an international and interdisciplinary selection of pre-eminent authorities; presents balanced coverage of both detailed theoretical analysis and real-world applications; examines social relationships in human-centered media for the development of socially-aware video, location-based, and multimedia applications; reviews techniques for recognizing the social roles played by people in an event, and for classifying human-object interaction activities; discusses the prediction and recognition of human attributes via social media analytics, including social relationships, facial age and beauty, and occupation.