Author | : Tatiana Makarova |
Publisher | : Elsevier |
Total Pages | : 577 |
Release | : 2006-01-16 |
Genre | : Science |
ISBN | : 0080460372 |
Carbon Based Magnetism is the most complete, detailed, and accurate guide on the magnetism of carbon, the main element of living creatures. Written by the leading experts in the field, the book provides a comprehensive review of relevant experimental data and theoretical concepts related to the magnetism of metal-free carbon systems. These systems include carbon based compounds, namely organic radical magnetic systems, and magnetic materials based on carbon structures. The aim is to advance the understanding of the fundamental properties of carbon. This volume discusses all major modern hypotheses on the physical nature of magnetic ordering in carbon systems. The first chapters deal with magnetic ordering mechanisms in p-electron systems as well as molecular magnets with spins residing only in p-orbitals. The following chapters explore the magnetic properties of pure carbon, with particular emphasis on nanosized carbon systems with closed boundary (fullerenes and nanotubes) and with open boundary (structures with edge-localized magnetic states). The remaining chapters focus on newer topics: experimental observation and theoretical models for magnetic ordering above room temperature in pure carbon. The book also includes twenty three review articles that summarize the most significant recent and ongoing exciting scientific developments and provide the explanation. It also highlights some problems that have yet to be solved and points out new avenues for research. This book will appeal to physicists, chemists and biologists. - The most complete, detailed, and accurate Guide in the magnetism of carbon - Dynamically written by the leading experts - Deals with recent scientific highlights - Gathers together chemists and physicists, theoreticians and experimentalists - Unified treatment rather than a series of individually authored papers - Description of genuine organic molecular ferromagnets - Unique description of new carbon materials with Curie temperatures well above ambient.