Categories, Types, and Structures

Categories, Types, and Structures
Author: Andrea Asperti
Publisher: MIT Press (MA)
Total Pages: 330
Release: 1991
Genre: Computers
ISBN:

Category theory is a mathematical subject whose importance in several areas of computer science, most notably the semantics of programming languages and the design of programmes using abstract data types, is widely acknowledged. This book introduces category theory at a level appropriate for computer scientists and provides practical examples in the context of programming language design.

Basic Category Theory

Basic Category Theory
Author: Tom Leinster
Publisher: Cambridge University Press
Total Pages: 193
Release: 2014-07-24
Genre: Mathematics
ISBN: 1107044243

A short introduction ideal for students learning category theory for the first time.

Category Theory in Context

Category Theory in Context
Author: Emily Riehl
Publisher: Courier Dover Publications
Total Pages: 273
Release: 2017-03-09
Genre: Mathematics
ISBN: 0486820807

Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.

Model Categories and Their Localizations

Model Categories and Their Localizations
Author: Philip S. Hirschhorn
Publisher: American Mathematical Soc.
Total Pages: 482
Release: 2003
Genre: Mathematics
ISBN: 0821849174

The aim of this book is to explain modern homotopy theory in a manner accessible to graduate students yet structured so that experts can skip over numerous linear developments to quickly reach the topics of their interest. Homotopy theory arises from choosing a class of maps, called weak equivalences, and then passing to the homotopy category by localizing with respect to the weak equivalences, i.e., by creating a new category in which the weak equivalences are isomorphisms. Quillen defined a model category to be a category together with a class of weak equivalences and additional structure useful for describing the homotopy category in terms of the original category. This allows you to make constructions analogous to those used to study the homotopy theory of topological spaces. A model category has a class of maps called weak equivalences plus two other classes of maps, called cofibrations and fibrations. Quillen's axioms ensure that the homotopy category exists and that the cofibrations and fibrations have extension and lifting properties similar to those of cofibration and fibration maps of topological spaces. During the past several decades the language of model categories has become standard in many areas of algebraic topology, and it is increasingly being used in other fields where homotopy theoretic ideas are becoming important, including modern algebraic $K$-theory and algebraic geometry. All these subjects and more are discussed in the book, beginning with the basic definitions and giving complete arguments in order to make the motivations and proofs accessible to the novice. The book is intended for graduate students and research mathematicians working in homotopy theory and related areas.

Category Theory for Programmers (New Edition, Hardcover)

Category Theory for Programmers (New Edition, Hardcover)
Author: Bartosz Milewski
Publisher:
Total Pages:
Release: 2019-08-24
Genre:
ISBN: 9780464243878

Category Theory is one of the most abstract branches of mathematics. It is usually taught to graduate students after they have mastered several other branches of mathematics, like algebra, topology, and group theory. It might, therefore, come as a shock that the basic concepts of category theory can be explained in relatively simple terms to anybody with some experience in programming.That's because, just like programming, category theory is about structure. Mathematicians discover structure in mathematical theories, programmers discover structure in computer programs. Well-structured programs are easier to understand and maintain and are less likely to contain bugs. Category theory provides the language to talk about structure and learning it will make you a better programmer.

Design Patterns

Design Patterns
Author: Erich Gamma
Publisher: Pearson Deutschland GmbH
Total Pages: 512
Release: 1995
Genre: Business & Economics
ISBN: 9783827328243

Software -- Software Engineering.

Lambda Calculus with Types

Lambda Calculus with Types
Author: Henk Barendregt
Publisher: Cambridge University Press
Total Pages: 969
Release: 2013-06-20
Genre: Mathematics
ISBN: 1107276349

This handbook with exercises reveals in formalisms, hitherto mainly used for hardware and software design and verification, unexpected mathematical beauty. The lambda calculus forms a prototype universal programming language, which in its untyped version is related to Lisp, and was treated in the first author's classic The Lambda Calculus (1984). The formalism has since been extended with types and used in functional programming (Haskell, Clean) and proof assistants (Coq, Isabelle, HOL), used in designing and verifying IT products and mathematical proofs. In this book, the authors focus on three classes of typing for lambda terms: simple types, recursive types and intersection types. It is in these three formalisms of terms and types that the unexpected mathematical beauty is revealed. The treatment is authoritative and comprehensive, complemented by an exhaustive bibliography, and numerous exercises are provided to deepen the readers' understanding and increase their confidence using types.

Tensor Categories

Tensor Categories
Author: Pavel Etingof
Publisher: American Mathematical Soc.
Total Pages: 362
Release: 2016-08-05
Genre: Mathematics
ISBN: 1470434415

Is there a vector space whose dimension is the golden ratio? Of course not—the golden ratio is not an integer! But this can happen for generalizations of vector spaces—objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.