Cavity Optomechanics

Cavity Optomechanics
Author: Markus Aspelmeyer
Publisher: Springer
Total Pages: 358
Release: 2014-07-05
Genre: Science
ISBN: 3642553125

During the last few years cavity-optomechanics has emerged as a new field of research. This highly interdisciplinary field studies the interaction between micro and nano mechanical systems and light. Possible applications range from novel high-bandwidth mechanical sensing devices through the generation of squeezed optical or mechanical states to even tests of quantum theory itself. This is one of the first books in this relatively young field. It is aimed at scientists, engineers and students who want to obtain a concise introduction to the state of the art in the field of cavity optomechanics. It is valuable to researchers in nano science, quantum optics, quantum information, gravitational wave detection and other cutting edge fields. Possible applications include biological sensing, frequency comb applications, silicon photonics etc. The technical content will be accessible to those who have familiarity with basic undergraduate physics.

Experimental Research of Cavity Optomechanics

Experimental Research of Cavity Optomechanics
Author: Zhen Shen
Publisher: Springer Nature
Total Pages: 110
Release: 2021-01-12
Genre: Technology & Engineering
ISBN: 981334458X

This thesis presents experimental research on the interaction between the optical field and the mechanical oscillator in whispering-gallery mode microcavities. It demonstrates how optomechanical interactions in a microresonator can be used to achieve non-magnetic non-reciprocity and develop all-optically controlled non-reciprocal multifunctional photonic devices. The thesis also discusses the interaction between the travelling optical and mechanical whispering-gallery modes, paving the way for non-reciprocal light storage as a coherent, circulating acoustic wave with a lifetime of up to tens of microseconds. Lastly, the thesis presents a high-frequency phase-sensitive heterodyne vibrometer, operating up to 10 GHz, which can be used for the high-resolution, non-invasive mapping of the vibration patterns of acoustic devices. The results presented here show that optomechanical devices hold great potential in the field of information processing.

Probing Two-Dimensional Quantum Fluids with Cavity Optomechanics

Probing Two-Dimensional Quantum Fluids with Cavity Optomechanics
Author: Yauhen Sachkou
Publisher: Springer Nature
Total Pages: 161
Release: 2020-07-17
Genre: Science
ISBN: 3030527662

Superfluid helium is a quantum liquid that exhibits a range of counter-intuitive phenomena such as frictionless flow. Quantized vortices are a particularly important feature of superfluid helium, and all superfluids, characterized by a circulation that can only take prescribed integer values. However, the strong interactions between atoms in superfluid helium prohibit quantitative theory of vortex behaviour. Experiments have similarly not been able to observe coherent vortex dynamics. This thesis resolves this challenge, bringing microphotonic techniques to bear on two-dimensional superfluid helium, observing coherent vortex dynamics for the first time, and achieving this on a silicon chip. This represents a major scientific contribution, as it opens the door not only to providing a better understanding of this esoteric quantum state of matter, but also to building new quantum technologies based upon it, and to understanding the dynamics of astrophysical superfluids such as those thought to exist in the core of neutron stars.

Quantum Optomechanics

Quantum Optomechanics
Author: Warwick P. Bowen
Publisher: CRC Press
Total Pages: 375
Release: 2015-11-18
Genre: Science
ISBN: 1482259168

Written by leading experimentalist Warwick P. Bowen and prominent theoretician Gerard J. Milburn, Quantum Optomechanics discusses modern developments in this novel field from experimental and theoretical standpoints. The authors share their insight on a range of important topics, including optomechanical cooling and entanglement; quantum limits on

Advances in Atomic, Molecular, and Optical Physics

Advances in Atomic, Molecular, and Optical Physics
Author:
Publisher: Academic Press
Total Pages: 457
Release: 2009-08-04
Genre: Science
ISBN: 0080951015

This volume continues the tradition of the Advances series. It contains contributions from experts in the field of atomic, molecular, and optical (AMO) physics. The articles contain some review material, but are intended to provide a comprehensive picture of recent important developments in AMO physics. Both theoretical and experimental articles are included in the volume. - International experts - Comprehensive articles - New developments

Generalized Optomechanics and Its Applications

Generalized Optomechanics and Its Applications
Author: Jin-Jin Li
Publisher: World Scientific
Total Pages: 247
Release: 2013
Genre: Technology & Engineering
ISBN: 9814417041

A mechanical oscillator coupled to the optical field in a cavity is a typical cavity optomechanical system. In our textbook, we prepare to introduce the quantum optical properties of optomechanical system, i.e. linear and nonlinear effects. Some quantum optical devices based on optomechanical system are also presented in the monograph, such as the Kerr modulator, quantum optical transistor, optomechanical mass sensor, and so on. But most importantly, we extend the idea of typical optomechanical system to coupled mechanical resonator system and demonstrate that the combined two-level structure and resonator system can serve as a generalized optomechanical system. The quantum optical properties, which exist in typical system, are also presented in the combined two-level structure and resonator system.

Quantum Optomechanics and Nanomechanics

Quantum Optomechanics and Nanomechanics
Author: Pierre-François Cohadon
Publisher: Oxford University Press
Total Pages: 464
Release: 2020-03-05
Genre: Science
ISBN: 0192563300

The Les Houches Summer School in August 2015 covered the emerging fields of cavity optomechanics and quantum nanomechanics. Optomechanics is flourishing and its concepts and techniques are now applied to a wide range of topics. Modern quantum optomechanics was born in the late 1970s in the framework of gravitational wave interferometry, with an initial focus on the quantum limits of displacement measurements. Carlton Caves, Vladimir Braginsky, and others realized that the sensitivity of the anticipated large-scale gravitational-wave interferometers (GWI) was fundamentally limited by the quantum fluctuations of the measurement laser beam. After tremendous experimental progress, the sensitivity of the upcoming next generation of GWI will effectively be limited by quantum noise. In this way, quantum-optomechanical effects will directly affect the operation of what is arguably the world's most impressive precision experiment. However, optomechanics has also gained a life of its own with a focus on the quantum aspects of moving mirrors. Laser light can be used to cool mechanical resonators well below the temperature of its environment. After proof-of-principle demonstrations of this cooling in 2006, a number of systems were used as the field gradually merged with its condensed matter cousin (nanomechanical systems) to try to reach the mechanical quantum ground state, eventually demonstrated in 2010 by pure cryogenic techniques and just one year later by a combination of cryogenic and radiation-pressure cooling. The book covers all aspects — historical, theoretical, experimental — of the field, with its applications to quantum measurement, foundations of quantum mechanics and quantum information. It is an essential read for any new researcher in the field.

Quantum Optics

Quantum Optics
Author: Pierre Meystre
Publisher: Springer Nature
Total Pages: 402
Release: 2021-07-24
Genre: Science
ISBN: 3030761835

This book is a thoroughly modern and highly pedagogical graduate-level introduction to quantum optics, a subject which has witnessed stunning developments in recent years and has come to occupy a central role in the 'second quantum revolution'. The reader is invited to explore the fundamental role that quantum optics plays in the control and manipulation of quantum systems, leading to ultracold atoms, circuit QED, quantum information science, quantum optomechanics, and quantum metrology. The building blocks of the subject are presented in a sequential fashion, starting from the simplest physical situations before moving to increasingly complicated ones. This pedagogically appealing approach leads to quantum entanglement and measurement theory being introduced early on and before more specialized topics such as cavity QED or laser cooling. The final chapter illustrates the power of scientific cross-fertilization by surveying cutting-edge applications of quantum optics and optomechanics in gravitational wave detection, tests of fundamental physics, searches for dark matter, geophysical monitoring, and ultraprecise clocks. Complete with worked examples and exercises, this book provides the reader with enough background knowledge and understanding to follow the current journal literature and begin producing their own original research.