Clifford Algebra to Geometric Calculus

Clifford Algebra to Geometric Calculus
Author: David Hestenes
Publisher: Springer Science & Business Media
Total Pages: 340
Release: 1984
Genre: Mathematics
ISBN: 9789027725615

Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.

A New Approach to Differential Geometry using Clifford's Geometric Algebra

A New Approach to Differential Geometry using Clifford's Geometric Algebra
Author: John Snygg
Publisher: Springer Science & Business Media
Total Pages: 472
Release: 2011-12-09
Genre: Mathematics
ISBN: 081768283X

Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.

Vector and Geometric Calculus

Vector and Geometric Calculus
Author: Alan Macdonald
Publisher: Createspace Independent Publishing Platform
Total Pages: 0
Release: 2012
Genre: Calculus
ISBN: 9781480132450

This textbook for the undergraduate vector calculus course presents a unified treatment of vector and geometric calculus. This is the printing of August 2022. The book is a sequel to the text Linear and Geometric Algebra by the same author. That text is a prerequisite for this one. Its web page is at faculty.luther.edu/ macdonal/laga. Linear algebra and vector calculus have provided the basic vocabulary of mathematics in dimensions greater than one for the past one hundred years. Just as geometric algebra generalizes linear algebra in powerful ways, geometric calculus generalizes vector calculus in powerful ways. Traditional vector calculus topics are covered, as they must be, since readers will encounter them in other texts and out in the world. Differential geometry is used today in many disciplines. A final chapter is devoted to it. Download the book's table of contents, preface, and index at the book's web site: faculty.luther.edu/ macdonal/vagc. From a review of Linear and Geometric Algebra: Alan Macdonald's text is an excellent resource if you are just beginning the study of geometric algebra and would like to learn or review traditional linear algebra in the process. The clarity and evenness of the writing, as well as the originality of presentation that is evident throughout this text, suggest that the author has been successful as a mathematics teacher in the undergraduate classroom. This carefully crafted text is ideal for anyone learning geometric algebra in relative isolation, which I suspect will be the case for many readers. -- Jeffrey Dunham, William R. Kenan Jr. Professor of Natural Sciences, Middlebury College

Geometric Algebra for Physicists

Geometric Algebra for Physicists
Author: Chris Doran
Publisher: Cambridge University Press
Total Pages: 647
Release: 2007-11-22
Genre: Science
ISBN: 1139643142

Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.

Geometric Algebra for Computer Graphics

Geometric Algebra for Computer Graphics
Author: John Vince
Publisher: Springer Science & Business Media
Total Pages: 268
Release: 2008-04-21
Genre: Computers
ISBN: 1846289963

Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems. The author tackles this complex subject with inimitable style, and provides an accessible and very readable introduction. The book is filled with lots of clear examples and is very well illustrated. Introductory chapters look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics.

Geometric Algebra

Geometric Algebra
Author: Emil Artin
Publisher: Courier Dover Publications
Total Pages: 228
Release: 2016-01-20
Genre: Mathematics
ISBN: 048680920X

This concise classic presents advanced undergraduates and graduate students in mathematics with an overview of geometric algebra. The text originated with lecture notes from a New York University course taught by Emil Artin, one of the preeminent mathematicians of the twentieth century. The Bulletin of the American Mathematical Society praised Geometric Algebra upon its initial publication, noting that "mathematicians will find on many pages ample evidence of the author's ability to penetrate a subject and to present material in a particularly elegant manner." Chapter 1 serves as reference, consisting of the proofs of certain isolated algebraic theorems. Subsequent chapters explore affine and projective geometry, symplectic and orthogonal geometry, the general linear group, and the structure of symplectic and orthogonal groups. The author offers suggestions for the use of this book, which concludes with a bibliography and index.

Clifford (geometric) Algebras with Applications to Physics, Mathematics, and Engineering

Clifford (geometric) Algebras with Applications to Physics, Mathematics, and Engineering
Author: William Eric Baylis
Publisher: Boston : Birkhäuser
Total Pages: 544
Release: 1996
Genre: Mathematics
ISBN:

This volume offers a comprehensive approach to the theoretical, applied and symbolic computational aspects of the subject. Excellent for self-study, leading experts in the field have written on the of topics mentioned above, using an easy approach with efficient geometric language for non-specialists.

Geometric Algebra for Computer Science

Geometric Algebra for Computer Science
Author: Leo Dorst
Publisher: Elsevier
Total Pages: 664
Release: 2010-07-26
Genre: Juvenile Nonfiction
ISBN: 0080553109

Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA

Understanding Geometric Algebra for Electromagnetic Theory

Understanding Geometric Algebra for Electromagnetic Theory
Author: John W. Arthur
Publisher: John Wiley & Sons
Total Pages: 320
Release: 2011-09-13
Genre: Science
ISBN: 0470941634

This book aims to disseminate geometric algebra as a straightforward mathematical tool set for working with and understanding classical electromagnetic theory. It's target readership is anyone who has some knowledge of electromagnetic theory, predominantly ordinary scientists and engineers who use it in the course of their work, or postgraduate students and senior undergraduates who are seeking to broaden their knowledge and increase their understanding of the subject. It is assumed that the reader is not a mathematical specialist and is neither familiar with geometric algebra or its application to electromagnetic theory. The modern approach, geometric algebra, is the mathematical tool set we should all have started out with and once the reader has a grasp of the subject, he or she cannot fail to realize that traditional vector analysis is really awkward and even misleading by comparison. Professors can request a solutions manual by email: [email protected]