Author | : John S. Lewis |
Publisher | : Academic Press |
Total Pages | : 224 |
Release | : 2000 |
Genre | : Computers |
ISBN | : 9780124467606 |
Disk contains: HAZARDS version 5.5, designed to predict asteroid or comet impacts with the Earth.
Author | : John S. Lewis |
Publisher | : Academic Press |
Total Pages | : 224 |
Release | : 2000 |
Genre | : Computers |
ISBN | : 9780124467606 |
Disk contains: HAZARDS version 5.5, designed to predict asteroid or comet impacts with the Earth.
Author | : Tom Gehrels |
Publisher | : University of Arizona Press |
Total Pages | : 1340 |
Release | : 1994 |
Genre | : Science |
ISBN | : 9780816515059 |
In 1993, the U.S. Department of Defense declassified information dealing with frequent explosions in the upper atmosphere caused by meteoric impact. It is estimated that impacts have occurred of a magnitude equivalent to the atomic bomb detonated at Hiroshima. Not all such space voyagers meet their end in the atmosphere, however; huge craters attest to the bombardment of earth over millions of years, and a major impact may have resulted in the extinction of dinosaurs. An impact in Siberia near the beginning of this century proves that such events are not confined to geologic time. Hazards Due to Comets and Asteroids marks a significant step in the attempt to come to grips with the threats posed by such phenomena. It brings together more than one hundred scientists from around the world, who draw on observational and theoretical research to focus on the technical problems related to all aspects of dealing with these hazards: searching for and identifying hazardous comets and asteroids; describing their statistics and characteristics; intercepting and altering the orbits of dangerous objects; and applying existent technologies—rocket boosters, rendezvous and soft-landing techniques, instrumentation—to such missions. The book considers defensive options for diverting or disrupting an approaching body, including solar sails, kinetic-energy impacts, nuclear explosives, robotic mass drivers, and various propulsion systems. A cataclysmic impact posing a threat to life on Earth is a possibility that tomorrow's technology is capable of averting. This book examines in depth the reality of the threat and proposes practical measures that can be initiated now should we ever need to deal with it.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 152 |
Release | : 2010-07-21 |
Genre | : Science |
ISBN | : 0309149681 |
The United States spends approximately $4 million each year searching for near-Earth objects (NEOs). The objective is to detect those that may collide with Earth. The majority of this funding supports the operation of several observatories that scan the sky searching for NEOs. This, however, is insufficient in detecting the majority of NEOs that may present a tangible threat to humanity. A significantly smaller amount of funding supports ways to protect the Earth from such a potential collision or "mitigation." In 2005, a Congressional mandate called for NASA to detect 90 percent of NEOs with diameters of 140 meters of greater by 2020. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies identifies the need for detection of objects as small as 30 to 50 meters as these can be highly destructive. The book explores four main types of mitigation including civil defense, "slow push" or "pull" methods, kinetic impactors and nuclear explosions. It also asserts that responding effectively to hazards posed by NEOs requires national and international cooperation. Defending Planet Earth: Near-Earth Object Surveys and Hazard Mitigation Strategies is a useful guide for scientists, astronomers, policy makers and engineers.
Author | : M. J. S. Belton |
Publisher | : Cambridge University Press |
Total Pages | : 448 |
Release | : 2004-09-06 |
Genre | : Science |
ISBN | : 9780521827645 |
It is known that large asteroids and comets can collide with the Earth with severe consequences. Although the chances of a collision in a person's lifetime are small, collisions are a random process and could occur at any time. This book collects the latest thoughts and ideas of scientists concerned with mitigating the threat of hazardous asteroids and comets. It reviews current knowledge of the population of potential colliders, including their numbers, locations, orbits, and how warning times might be improved. The structural properties and composition of their interiors and surfaces are reviewed, and their orbital response to the application of pulses of energy is discussed. Difficulties of operating in space near, or on the surface of, very low mass objects are examined. The book concludes with a discussion of the problems faced in communicating the nature of the impact hazard to the public.
Author | : Peter T. Bobrowsky |
Publisher | : Springer Science & Business Media |
Total Pages | : 549 |
Release | : 2007-06-10 |
Genre | : Science |
ISBN | : 3540327118 |
Leading specialists in various disciplines were first invited to a multidisciplinary workshop funded by ICSU on the topic to gain a better appreciation and perspective on the subject of comet/asteroid impacts as viewed by different disciplines. This volume provides a necessary link between various disciplines and comet/asteroid impacts.
Author | : William Frederick Bottke |
Publisher | : University of Arizona Press |
Total Pages | : 818 |
Release | : 2002-01-01 |
Genre | : Science |
ISBN | : 9780816522811 |
Two hundred years after the first asteroid was discovered, asteroids can no longer be considered mere points of light in the sky. Spacecraft missions, advanced Earth-based observation techniques, and state-of-the-art numerical models are continually revealing the detailed shapes, structures, geological properties, and orbital characteristics of these smaller denizens of our solar system. This volume brings together the latest information obtained by spacecraft combined with astronomical observations and theoretical modeling, to present our best current understanding of asteroids and the clues they reveal for the origin an,d evolution of the solar system. This collective knowledge, prepared by a team of more than one hundred international authorities on asteroids, includes new insights into asteroid-meteorite connections, possible relationships with comets, and the hazards posed by asteroids colliding with Earth. The book's contents include reports on surveys based on remote observation and summaries of physical properties; results of in situ exploration; studies of dynamical, collisional, cosmochemical, and weathering evolutionary processes; and discussions of asteroid families and the relationships between asteroids and other solar system bodies. Two previous Space Science Series volumes have established standards for research into asteroids. Asteroids III carries that tradition forward in a book that will stand as the definitive source on its subject for the next decade.
Author | : Tom Gehrels |
Publisher | : University of Arizona Press |
Total Pages | : 1317 |
Release | : 2021-11-30 |
Genre | : Science |
ISBN | : 0816547416 |
In 1993, the U.S. Department of Defense declassified information dealing with frequent explosions in the upper atmosphere caused by meteoric impact. It is estimated that impacts have occurred of a magnitude equivalent to the atomic bomb detonated at Hiroshima. Not all such space voyagers meet their end in the atmosphere, however; huge craters attest to the bombardment of earth over millions of years, and a major impact may have resulted in the extinction of dinosaurs. An impact in Siberia near the beginning of this century proves that such events are not confined to geologic time. Hazards Due to Comets and Asteroids marks a significant step in the attempt to come to grips with the threats posed by such phenomena. It brings together more than one hundred scientists from around the world, who draw on observational and theoretical research to focus on the technical problems related to all aspects of dealing with these hazards: searching for and identifying hazardous comets and asteroids; describing their statistics and characteristics; intercepting and altering the orbits of dangerous objects; and applying existent technologies—rocket boosters, rendezvous and soft-landing techniques, instrumentation—to such missions. The book considers defensive options for diverting or disrupting an approaching body, including solar sails, kinetic-energy impacts, nuclear explosives, robotic mass drivers, and various propulsion systems. A cataclysmic impact posing a threat to life on Earth is a possibility that tomorrow's technology is capable of averting. This book examines in depth the reality of the threat and proposes practical measures that can be initiated now should we ever need to deal with it.
Author | : Gordon Dillow |
Publisher | : Center Point |
Total Pages | : 0 |
Release | : 2019-08 |
Genre | : Nature |
ISBN | : 9781643582863 |
"An historical survey about asteroid hits sustained by Earth and the defenses being prepared against future asteroid-caused catastrophe"--
Author | : G. R. Osinski |
Publisher | : John Wiley & Sons |
Total Pages | : 362 |
Release | : 2012-12-26 |
Genre | : Science |
ISBN | : 140519829X |
Impact cratering is arguably the most ubiquitous geological process in the Solar System. It has played an important role in Earth’s history, shaping the geological landscape, affecting the evolution of life, and generating economic resources. However, it was only in the latter half of the 20th century that the importance of impact cratering as a geological process was recognized and only during the past couple of decades that the study of meteorite impact structures has moved into the mainstream. This book seeks to fill a critical gap in the literature by providing an overview text covering broad aspects of the impact cratering process and aimed at graduate students, professionals and researchers alike. It introduces readers to the threat and nature of impactors, the impact cratering process, the products, and the effects – both destructive and beneficial. A series of chapters on the various techniques used to study impact craters provide a foundation for anyone studying impact craters for the first time.