Common Sense, the Turing Test, and the Quest for Real AI

Common Sense, the Turing Test, and the Quest for Real AI
Author: Hector J. Levesque
Publisher: MIT Press
Total Pages: 190
Release: 2017
Genre: Computers
ISBN: 0262036045

What kind of AI? -- The big puzzle -- Knowledge and behavior -- Making it and faking it -- Learning with and without experience -- Book smarts and street smarts -- The long tail and the limits to training -- Symbols and symbol processing -- Knowledge-based systems -- AI technology

Common Sense, the Turing Test, and the Quest for Real AI

Common Sense, the Turing Test, and the Quest for Real AI
Author: Hector J. Levesque
Publisher: MIT Press
Total Pages: 190
Release: 2018-03-09
Genre: Computers
ISBN: 0262535203

What artificial intelligence can tell us about the mind and intelligent behavior. What can artificial intelligence teach us about the mind? If AI's underlying concept is that thinking is a computational process, then how can computation illuminate thinking? It's a timely question. AI is all the rage, and the buzziest AI buzz surrounds adaptive machine learning: computer systems that learn intelligent behavior from massive amounts of data. This is what powers a driverless car, for example. In this book, Hector Levesque shifts the conversation to “good old fashioned artificial intelligence,” which is based not on heaps of data but on understanding commonsense intelligence. This kind of artificial intelligence is equipped to handle situations that depart from previous patterns—as we do in real life, when, for example, we encounter a washed-out bridge or when the barista informs us there's no more soy milk. Levesque considers the role of language in learning. He argues that a computer program that passes the famous Turing Test could be a mindless zombie, and he proposes another way to test for intelligence—the Winograd Schema Test, developed by Levesque and his colleagues. “If our goal is to understand intelligent behavior, we had better understand the difference between making it and faking it,” he observes. He identifies a possible mechanism behind common sense and the capacity to call on background knowledge: the ability to represent objects of thought symbolically. As AI migrates more and more into everyday life, we should worry if systems without common sense are making decisions where common sense is needed.

Machines like Us

Machines like Us
Author: Ronald J. Brachman
Publisher: MIT Press
Total Pages: 320
Release: 2022-05-17
Genre: Computers
ISBN: 0262369222

How we can create artificial intelligence with broad, robust common sense rather than narrow, specialized expertise. It’s sometime in the not-so-distant future, and you send your fully autonomous self-driving car to the store to pick up your grocery order. The car is endowed with as much capability as an artificial intelligence agent can have, programmed to drive better than you do. But when the car encounters a traffic light stuck on red, it just sits there—indefinitely. Its obstacle-avoidance, lane-following, and route-calculation capacities are all irrelevant; it fails to act because it lacks the common sense of a human driver, who would quickly figure out what’s happening and find a workaround. In Machines like Us, Ron Brachman and Hector Levesque—both leading experts in AI—consider what it would take to create machines with common sense rather than just the specialized expertise of today’s AI systems. Using the stuck traffic light and other relatable examples, Brachman and Levesque offer an accessible account of how common sense might be built into a machine. They analyze common sense in humans, explain how AI over the years has focused mainly on expertise, and suggest ways to endow an AI system with both common sense and effective reasoning. Finally, they consider the critical issue of how we can trust an autonomous machine to make decisions, identifying two fundamental requirements for trustworthy autonomous AI systems: having reasons for doing what they do, and being able to accept advice. Both in the end are dependent on having common sense.

The Logic of Knowledge Bases

The Logic of Knowledge Bases
Author: Hector J. Levesque
Publisher: MIT Press
Total Pages: 316
Release: 2001-02-15
Genre: Computers
ISBN: 9780262263498

This book describes in detail the relationship between symbolic representations of knowledge and abstract states of knowledge, exploring along the way the foundations of knowledge, knowledge bases, knowledge-based systems, and knowledge representation and reasoning. The idea of knowledge bases lies at the heart of symbolic, or "traditional," artificial intelligence. A knowledge-based system decides how to act by running formal reasoning procedures over a body of explicitly represented knowledge—a knowledge base. The system is not programmed for specific tasks; rather, it is told what it needs to know and expected to infer the rest. This book is about the logic of such knowledge bases. It describes in detail the relationship between symbolic representations of knowledge and abstract states of knowledge, exploring along the way the foundations of knowledge, knowledge bases, knowledge-based systems, and knowledge representation and reasoning. Assuming some familiarity with first-order predicate logic, the book offers a new mathematical model of knowledge that is general and expressive yet more workable in practice than previous models. The book presents a style of semantic argument and formal analysis that would be cumbersome or completely impractical with other approaches. It also shows how to treat a knowledge base as an abstract data type, completely specified in an abstract way by the knowledge-level operations defined over it.

Artificial Intelligence

Artificial Intelligence
Author: Melanie Mitchell
Publisher: Farrar, Straus and Giroux
Total Pages: 336
Release: 2019-10-15
Genre: Computers
ISBN: 0374715238

Melanie Mitchell separates science fact from science fiction in this sweeping examination of the current state of AI and how it is remaking our world No recent scientific enterprise has proved as alluring, terrifying, and filled with extravagant promise and frustrating setbacks as artificial intelligence. The award-winning author Melanie Mitchell, a leading computer scientist, now reveals AI’s turbulent history and the recent spate of apparent successes, grand hopes, and emerging fears surrounding it. In Artificial Intelligence, Mitchell turns to the most urgent questions concerning AI today: How intelligent—really—are the best AI programs? How do they work? What can they actually do, and when do they fail? How humanlike do we expect them to become, and how soon do we need to worry about them surpassing us? Along the way, she introduces the dominant models of modern AI and machine learning, describing cutting-edge AI programs, their human inventors, and the historical lines of thought underpinning recent achievements. She meets with fellow experts such as Douglas Hofstadter, the cognitive scientist and Pulitzer Prize–winning author of the modern classic Gödel, Escher, Bach, who explains why he is “terrified” about the future of AI. She explores the profound disconnect between the hype and the actual achievements in AI, providing a clear sense of what the field has accomplished and how much further it has to go. Interweaving stories about the science of AI and the people behind it, Artificial Intelligence brims with clear-sighted, captivating, and accessible accounts of the most interesting and provocative modern work in the field, flavored with Mitchell’s humor and personal observations. This frank, lively book is an indispensable guide to understanding today’s AI, its quest for “human-level” intelligence, and its impact on the future for us all.

Parsing the Turing Test

Parsing the Turing Test
Author: Robert Epstein
Publisher: Springer Science & Business Media
Total Pages: 520
Release: 2008-12-01
Genre: Computers
ISBN: 1402096240

An exhaustive work that represents a landmark exploration of both the philosophical and methodological issues surrounding the search for true artificial intelligence. Distinguished psychologists, computer scientists, philosophers, and programmers from around the world debate weighty issues such as whether a self-conscious computer would create an internet ‘world mind’. This hugely important volume explores nothing less than the future of the human race itself.

The AI Does Not Hate You

The AI Does Not Hate You
Author: Tom Chivers
Publisher:
Total Pages: 0
Release: 2019
Genre: Artificial intelligence
ISBN: 9781474608770

A deep-dive into the weird and wonderful world of Artificial Intelligence. 'The AI does not hate you, nor does it love you, but you are made of atoms which it can use for something else'. This is a book about AI and AI risk. But it's also more importantly about a community of people who are trying to think rationally about intelligence, and the places that these thoughts are taking them, and what insight they can and can't give us about the future of the human race over the next few years. It explains why these people are worried, why they might be right, and why they might be wrong. It is a book about the cutting edge of our thinking on intelligence and rationality right now by the people who stay up all night worrying about it. Along the way, we discover why we probably don't need to worry about a future AI resurrecting a perfect copy of our minds and torturing us for not inventing it sooner, but we perhaps should be concerned about paperclips destroying life as we know it; how Mickey Mouse can teach us an important lesson about how to program AI; and how a more rational approach to life could be what saves us all. --

Algorithms Are Not Enough

Algorithms Are Not Enough
Author: Herbert L. Roitblat
Publisher: MIT Press
Total Pages: 340
Release: 2020-10-13
Genre: Computers
ISBN: 0262044129

Why a new approach is needed in the quest for general artificial intelligence. Since the inception of artificial intelligence, we have been warned about the imminent arrival of computational systems that can replicate human thought processes. Before we know it, computers will become so intelligent that humans will be lucky to kept as pets. And yet, although artificial intelligence has become increasingly sophisticated—with such achievements as driverless cars and humanless chess-playing—computer science has not yet created general artificial intelligence. In Algorithms Are Not Enough, Herbert Roitblat explains how artificial general intelligence may be possible and why a robopocalypse is neither imminent, nor likely. Existing artificial intelligence, Roitblat shows, has been limited to solving path problems, in which the entire problem consists of navigating a path of choices—finding specific solutions to well-structured problems. Human problem-solving, on the other hand, includes problems that consist of ill-structured situations, including the design of problem-solving paths themselves. These are insight problems, and insight is an essential part of intelligence that has not been addressed by computer science. Roitblat draws on cognitive science, including psychology, philosophy, and history, to identify the essential features of intelligence needed to achieve general artificial intelligence. Roitblat describes current computational approaches to intelligence, including the Turing Test, machine learning, and neural networks. He identifies building blocks of natural intelligence, including perception, analogy, ambiguity, common sense, and creativity. General intelligence can create new representations to solve new problems, but current computational intelligence cannot. The human brain, like the computer, uses algorithms; but general intelligence, he argues, is more than algorithmic processes.

The Myth of Artificial Intelligence

The Myth of Artificial Intelligence
Author: Erik J. Larson
Publisher: Harvard University Press
Total Pages: 321
Release: 2021-04-06
Genre: Computers
ISBN: 0674983513

“Artificial intelligence has always inspired outlandish visions—that AI is going to destroy us, save us, or at the very least radically transform us. Erik Larson exposes the vast gap between the actual science underlying AI and the dramatic claims being made for it. This is a timely, important, and even essential book.” —John Horgan, author of The End of Science Many futurists insist that AI will soon achieve human levels of intelligence. From there, it will quickly eclipse the most gifted human mind. The Myth of Artificial Intelligence argues that such claims are just that: myths. We are not on the path to developing truly intelligent machines. We don’t even know where that path might be. Erik Larson charts a journey through the landscape of AI, from Alan Turing’s early work to today’s dominant models of machine learning. Since the beginning, AI researchers and enthusiasts have equated the reasoning approaches of AI with those of human intelligence. But this is a profound mistake. Even cutting-edge AI looks nothing like human intelligence. Modern AI is based on inductive reasoning: computers make statistical correlations to determine which answer is likely to be right, allowing software to, say, detect a particular face in an image. But human reasoning is entirely different. Humans do not correlate data sets; we make conjectures sensitive to context—the best guess, given our observations and what we already know about the world. We haven’t a clue how to program this kind of reasoning, known as abduction. Yet it is the heart of common sense. Larson argues that all this AI hype is bad science and bad for science. A culture of invention thrives on exploring unknowns, not overselling existing methods. Inductive AI will continue to improve at narrow tasks, but if we are to make real progress, we must abandon futuristic talk and learn to better appreciate the only true intelligence we know—our own.