Introduction To The Theory Of Neural Computation

Introduction To The Theory Of Neural Computation
Author: John A. Hertz
Publisher: CRC Press
Total Pages: 352
Release: 2018-03-08
Genre: Science
ISBN: 0429968213

Comprehensive introduction to the neural network models currently under intensive study for computational applications. It also provides coverage of neural network applications in a variety of problems of both theoretical and practical interest.

Neural Engineering

Neural Engineering
Author: Chris Eliasmith
Publisher: MIT Press
Total Pages: 384
Release: 2003
Genre: Bioinformatics
ISBN: 9780262550604

A synthesis of current approaches to adapting engineering tools to the study of neurobiological systems.

Handbook of Neural Computation

Handbook of Neural Computation
Author: Pijush Samui
Publisher: Academic Press
Total Pages: 660
Release: 2017-07-18
Genre: Technology & Engineering
ISBN: 0128113197

Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. - Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more - Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing - Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods

Single Neuron Computation

Single Neuron Computation
Author: Thomas M. McKenna
Publisher: Academic Press
Total Pages: 663
Release: 2014-05-19
Genre: Computers
ISBN: 1483296067

This book contains twenty-two original contributions that provide a comprehensive overview of computational approaches to understanding a single neuron structure. The focus on cellular-level processes is twofold. From a computational neuroscience perspective, a thorough understanding of the information processing performed by single neurons leads to an understanding of circuit- and systems-level activity. From the standpoint of artificial neural networks (ANNs), a single real neuron is as complex an operational unit as an entire ANN, and formalizing the complex computations performed by real neurons is essential to the design of enhanced processor elements for use in the next generation of ANNs.The book covers computation in dendrites and spines, computational aspects of ion channels, synapses, patterned discharge and multistate neurons, and stochastic models of neuron dynamics. It is the most up-to-date presentation of biophysical and computational methods.

Analog VLSI and Neural Systems

Analog VLSI and Neural Systems
Author: Carver Mead
Publisher: Addison Wesley Publishing Company
Total Pages: 416
Release: 1989
Genre: Computers
ISBN:

A self-contained text, suitable for a broad audience. Presents basic concepts in electronics, transistor physics, and neurobiology for readers without backgrounds in those areas. Annotation copyrighted by Book News, Inc., Portland, OR

Neural Networks and Analog Computation

Neural Networks and Analog Computation
Author: Hava T. Siegelmann
Publisher: Springer Science & Business Media
Total Pages: 193
Release: 2012-12-06
Genre: Computers
ISBN: 146120707X

The theoretical foundations of Neural Networks and Analog Computation conceptualize neural networks as a particular type of computer consisting of multiple assemblies of basic processors interconnected in an intricate structure. Examining these networks under various resource constraints reveals a continuum of computational devices, several of which coincide with well-known classical models. On a mathematical level, the treatment of neural computations enriches the theory of computation but also explicated the computational complexity associated with biological networks, adaptive engineering tools, and related models from the fields of control theory and nonlinear dynamics. The material in this book will be of interest to researchers in a variety of engineering and applied sciences disciplines. In addition, the work may provide the base of a graduate-level seminar in neural networks for computer science students.

Biophysics of Computation

Biophysics of Computation
Author: Christof Koch
Publisher: Oxford University Press
Total Pages: 587
Release: 2004-10-28
Genre: Medical
ISBN: 0195181999

Neural network research often builds on the fiction that neurons are simple linear threshold units, completely neglecting the highly dynamic and complex nature of synapses, dendrites, and voltage-dependent ionic currents. Biophysics of Computation: Information Processing in Single Neurons challenges this notion, using richly detailed experimental and theoretical findings from cellular biophysics to explain the repertoire of computational functions available to single neurons. The author shows how individual nerve cells can multiply, integrate, or delay synaptic inputs and how information can be encoded in the voltage across the membrane, in the intracellular calcium concentration, or in the timing of individual spikes.Key topics covered include the linear cable equation; cable theory as applied to passive dendritic trees and dendritic spines; chemical and electrical synapses and how to treat them from a computational point of view; nonlinear interactions of synaptic input in passive and active dendritic trees; the Hodgkin-Huxley model of action potential generation and propagation; phase space analysis; linking stochastic ionic channels to membrane-dependent currents; calcium and potassium currents and their role in information processing; the role of diffusion, buffering and binding of calcium, and other messenger systems in information processing and storage; short- and long-term models of synaptic plasticity; simplified models of single cells; stochastic aspects of neuronal firing; the nature of the neuronal code; and unconventional models of sub-cellular computation.Biophysics of Computation: Information Processing in Single Neurons serves as an ideal text for advanced undergraduate and graduate courses in cellular biophysics, computational neuroscience, and neural networks, and will appeal to students and professionals in neuroscience, electrical and computer engineering, and physics.

Fundamentals of Computational Intelligence

Fundamentals of Computational Intelligence
Author: James M. Keller
Publisher: John Wiley & Sons
Total Pages: 378
Release: 2016-07-13
Genre: Technology & Engineering
ISBN: 111921436X

Provides an in-depth and even treatment of the three pillars of computational intelligence and how they relate to one another This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basis function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzzy integrals Examines evolutionary optimization, evolutionary learning and problem solving, and collective intelligence Includes end-of-chapter practice problems that will help readers apply methods and techniques to real-world problems Fundamentals of Computational intelligence is written for advanced undergraduates, graduate students, and practitioners in electrical and computer engineering, computer science, and other engineering disciplines.

Computational Systems Neurobiology

Computational Systems Neurobiology
Author: N. Le Novère
Publisher: Springer Science & Business Media
Total Pages: 569
Release: 2012-07-20
Genre: Medical
ISBN: 9400738587

Computational neurosciences and systems biology are among the main domains of life science research where mathematical modeling made a difference. This book introduces the many different types of computational studies one can develop to study neuronal systems. It is aimed at undergraduate students starting their research in computational neurobiology or more senior researchers who would like, or need, to move towards computational approaches. Based on their specific project, the readers would then move to one of the more specialized excellent textbooks available in the field. The first part of the book deals with molecular systems biology. Functional genomics is introduced through examples of transcriptomics and proteomics studies of neurobiological interest. Quantitative modelling of biochemical systems is presented in homogeneous compartments and using spatial descriptions. A second part deals with the various approaches to model single neuron physiology, and naturally moves to neuronal networks. A division is focused on the development of neurons and neuronal systems and the book closes on a series of methodological chapters. From the molecules to the organ, thinking at the level of systems is transforming biology and its impact on society. This book will help the reader to hop on the train directly in the tank engine.