Computational Design of Ligand Binding Proteins

Computational Design of Ligand Binding Proteins
Author: Barry L. Stoddard
Publisher: Humana
Total Pages: 0
Release: 2016-04-20
Genre: Science
ISBN: 9781493935673

This volume provides a collection of protocols and approaches for the creation of novel ligand binding proteins, compiled and described by many of today's leaders in the field of protein engineering. Chapters focus on modeling protein ligand binding sites, accurate modeling of protein-ligand conformational sampling, scoring of individual docked solutions, structure-based design program such as ROSETTA, protein engineering, and additional methodological approaches. Examples of applications include the design of metal-binding proteins and light-induced ligand binding proteins, the creation of binding proteins that also display catalytic activity, and the binding of larger peptide, protein, DNA and RNA ligands. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.

Computational Protein Design

Computational Protein Design
Author: Ilan Samish
Publisher: Humana
Total Pages: 0
Release: 2016-12-03
Genre: Science
ISBN: 9781493966356

The aim this volume is to present the methods, challenges, software, and applications of this widespread and yet still evolving and maturing field. Computational Protein Design, the first book with this title, guides readers through computational protein design approaches, software and tailored solutions to specific case-study targets. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Computational Protein Design aims to ensure successful results in the further study of this vital field.

Computational Design of Chemicals for the Control of Mosquitoes and Their Diseases

Computational Design of Chemicals for the Control of Mosquitoes and Their Diseases
Author: James Devillers
Publisher: CRC Press
Total Pages: 479
Release: 2017-12-15
Genre: Medical
ISBN: 1351647695

There is a compelling need for new drugs and efficient treatments against mosquito-borne diseases. Environmentally safe, but effective insecticides that address the problems of resistance are required. Computational Design of Chemicals for the Control of Mosquitoes and Their Diseases explains how the search for new substances effective against mosquitoes and their diseases has benefited from the use of in silico techniques. QSAR modeling is suited to identify the key structural features and/or physicochemical properties explaining an activity and to propose candidate molecules for further evaluation by laboratory tests. Homology modeling is useful to approximate the 3D structure of proteins of interest. Pharmacophore modeling is a powerful means to capture the chemical features responsible for an activity and to identify new potentially active compounds via the virtual screening of databases. Fugacity modeling and a wealth of other modeling paradigms are useful for risk assessment in vector borne disease control.

Structural Biology in Drug Discovery

Structural Biology in Drug Discovery
Author: Jean-Paul Renaud
Publisher: John Wiley & Sons
Total Pages: 1437
Release: 2020-01-09
Genre: Medical
ISBN: 1118900502

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins

Computational Drug Discovery

Computational Drug Discovery
Author: Vasanthanathan Poongavanam
Publisher: John Wiley & Sons
Total Pages: 882
Release: 2024-01-19
Genre: Science
ISBN: 3527840737

Computational Drug Discovery A comprehensive resource that explains a wide array of computational technologies and methods driving innovation in drug discovery Computational Drug Discovery: Methods and Applications (2 volume set) covers a wide range of cutting-edge computational technologies and computational chemistry methods that are transforming drug discovery. The book delves into recent advances, particularly focusing on artificial intelligence (AI) and its application for protein structure prediction, AI-enabled virtual screening, and generative modeling for compound design. Additionally, it covers key technological advancements in computing such as quantum and cloud computing that are driving innovations in drug discovery. Furthermore, dedicated chapters that addresses the recent trends in the field of computer aided drug design, including ultra-large-scale virtual screening for hit identification, computational strategies for designing new therapeutic modalities like PROTACs and covalent inhibitors that target residues beyond cysteine are also presented. To offer the most up-to-date information on computational methods utilized in computational drug discovery, it covers chapters highlighting the use of molecular dynamics and other related methods, application of QM and QM/MM methods in computational drug design, and techniques for navigating and visualizing the chemical space, as well as leveraging big data to drive drug discovery efforts. The book is thoughtfully organized into eight thematic sections, each focusing on a specific computational method or technology applied to drug discovery. Authored by renowned experts from academia, pharmaceutical industry, and major drug discovery software providers, it offers an overview of the latest advances in computational drug discovery. Key topics covered in the book include: Application of molecular dynamics simulations and related approaches in drug discovery The application of QM, hybrid approaches such as QM/MM, and fragment molecular orbital framework for understanding protein-ligand interactions Adoption of artificial intelligence in pre-clinical drug discovery, encompassing protein structure prediction, generative modeling for de novo design, and virtual screening. Techniques for navigating and visualizing the chemical space, along with harnessing big data to drive drug discovery efforts. Methods for performing ultra-large-scale virtual screening for hit identification. Computational strategies for designing new therapeutic models, including PROTACs and molecular glues. In silico ADMET approaches for predicting a variety of pharmacokinetic and physicochemical endpoints. The role of computing technologies like quantum computing and cloud computing in accelerating drug discovery This book will provide readers an overview of the latest advancements in computational drug discovery and serve as a valuable resource for professionals engaged in drug discovery.

Protein Interactions: Computational Methods, Analysis And Applications

Protein Interactions: Computational Methods, Analysis And Applications
Author: M Michael Gromiha
Publisher: World Scientific
Total Pages: 424
Release: 2020-03-05
Genre: Science
ISBN: 9811211884

This book is indexed in Chemical Abstracts ServiceThe interactions of proteins with other molecules are important in many cellular activities. Investigations have been carried out to understand the recognition mechanism, identify the binding sites, analyze the the binding affinity of complexes, and study the influence of mutations on diseases. Protein interactions are also crucial in structure-based drug design.This book covers computational analysis of protein-protein, protein-nucleic acid and protein-ligand interactions and their applications. It provides up-to-date information and the latest developments from experts in the field, using illustrations to explain the key concepts and applications. This volume can serve as a single source on comparative studies of proteins interacting with proteins/DNAs/RNAs/carbohydrates and small molecules.

Protein Design and Structure

Protein Design and Structure
Author: Rossen Donev
Publisher: Academic Press
Total Pages: 434
Release: 2022-05-06
Genre: Science
ISBN: 0323992307

Protein Design and Structure, Volume 130 in the Advances in Protein Chemistry and Structural Biology series, highlights new advances in the field, with this new volume presenting interesting chapters. Each chapter is written by an international board of authors. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Advances in Protein Chemistry and Structural Biology series - Includes the latest information on protein design and structure

Design of Polymeric Platforms for Selective Biorecognition

Design of Polymeric Platforms for Selective Biorecognition
Author: Juan Rodríguez-Hernández
Publisher: Springer
Total Pages: 388
Release: 2015-08-21
Genre: Technology & Engineering
ISBN: 3319170619

This book addresses in an integrated manner all the critical aspects for building the next generation of biorecognition platforms - from biomolecular recognition to surface fabrication. The most recent strategies reported to create surface nano and micropatterns are thoroughly analyzed. This book contains descriptions of the types of molecules immobilized at surfaces that can be used for specific biorecognition, how to immobilize them, and how to control their arrangement and functionality at the surface. Small molecules, peptides, proteins and oligonucleotides are at the core of the biorecognition processes and will constitute a special part of this book. The authors include detailed information on biological processes, biomolecular screening, biosensing, diagnostic and detection devices, tissue engineering, development of biocompatible materials and biomedical devices.

Free Energy Calculations

Free Energy Calculations
Author: Christophe Chipot
Publisher: Springer Science & Business Media
Total Pages: 528
Release: 2007-01-08
Genre: Language Arts & Disciplines
ISBN: 3540384472

Free energy constitutes the most important thermodynamic quantity to understand how chemical species recognize each other, associate or react. Examples of problems in which knowledge of the underlying free energy behaviour is required, include conformational equilibria and molecular association, partitioning between immiscible liquids, receptor-drug interaction, protein-protein and protein-DNA association, and protein stability. This volume sets out to present a coherent and comprehensive account of the concepts that underlie different approaches devised for the determination of free energies. The reader will gain the necessary insight into the theoretical and computational foundations of the subject and will be presented with relevant applications from molecular-level modelling and simulations of chemical and biological systems. Both formally accurate and approximate methods are covered using both classical and quantum mechanical descriptions. A central theme of the book is that the wide variety of free energy calculation techniques available today can be understood as different implementations of a few basic principles. The book is aimed at a broad readership of graduate students and researchers having a background in chemistry, physics, engineering and physical biology.