An Introduction to Computational Learning Theory

An Introduction to Computational Learning Theory
Author: Michael J. Kearns
Publisher: MIT Press
Total Pages: 230
Release: 1994-08-15
Genre: Computers
ISBN: 9780262111935

Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning. Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs. The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography, and the resulting computational limitations on efficient learning; reducibility between learning problems; and algorithms for learning finite automata from active experimentation.

Boosting

Boosting
Author: Robert E. Schapire
Publisher: MIT Press
Total Pages: 544
Release: 2014-01-10
Genre: Computers
ISBN: 0262526034

An accessible introduction and essential reference for an approach to machine learning that creates highly accurate prediction rules by combining many weak and inaccurate ones. Boosting is an approach to machine learning based on the idea of creating a highly accurate predictor by combining many weak and inaccurate “rules of thumb.” A remarkably rich theory has evolved around boosting, with connections to a range of topics, including statistics, game theory, convex optimization, and information geometry. Boosting algorithms have also enjoyed practical success in such fields as biology, vision, and speech processing. At various times in its history, boosting has been perceived as mysterious, controversial, even paradoxical. This book, written by the inventors of the method, brings together, organizes, simplifies, and substantially extends two decades of research on boosting, presenting both theory and applications in a way that is accessible to readers from diverse backgrounds while also providing an authoritative reference for advanced researchers. With its introductory treatment of all material and its inclusion of exercises in every chapter, the book is appropriate for course use as well. The book begins with a general introduction to machine learning algorithms and their analysis; then explores the core theory of boosting, especially its ability to generalize; examines some of the myriad other theoretical viewpoints that help to explain and understand boosting; provides practical extensions of boosting for more complex learning problems; and finally presents a number of advanced theoretical topics. Numerous applications and practical illustrations are offered throughout.

Understanding Machine Learning

Understanding Machine Learning
Author: Shai Shalev-Shwartz
Publisher: Cambridge University Press
Total Pages: 415
Release: 2014-05-19
Genre: Computers
ISBN: 1107057132

Introduces machine learning and its algorithmic paradigms, explaining the principles behind automated learning approaches and the considerations underlying their usage.

Computational Learning Theory and Natural Learning Systems: Intersections between theory and experiment

Computational Learning Theory and Natural Learning Systems: Intersections between theory and experiment
Author: Stephen José Hanson
Publisher: Mit Press
Total Pages: 449
Release: 1994
Genre: Computers
ISBN: 9780262581332

Annotation These original contributions converge on an exciting and fruitful intersection of three historically distinct areas of learning research: computational learning theory, neural networks, and symbolic machine learning. Bridging theory and practice, computer science and psychology, they consider general issues in learning systems that could provide constraints for theory and at the same time interpret theoretical results in the context of experiments with actual learning systems. In all, nineteen chapters address questions such as, What is a natural system? How should learning systems gain from prior knowledge? If prior knowledge is important, how can we quantify how important? What makes a learning problem hard? How are neural networks and symbolic machine learning approaches similar? Is there a fundamental difference in the kind of task a neural network can easily solve as opposed to those a symbolic algorithm can easily solve? Stephen J. Hanson heads the Learning Systems Department at Siemens Corporate Research and is a Visiting Member of the Research Staff and Research Collaborator at the Cognitive Science Laboratory at Princeton University. George A. Drastal is Senior Research Scientist at Siemens Corporate Research. Ronald J. Rivest is Professor of Computer Science and Associate Director of the Laboratory for Computer Science at the Massachusetts Institute of Technology.

Learning Theory

Learning Theory
Author: Felipe Cucker
Publisher: Cambridge University Press
Total Pages:
Release: 2007-03-29
Genre: Computers
ISBN: 1139462865

The goal of learning theory is to approximate a function from sample values. To attain this goal learning theory draws on a variety of diverse subjects, specifically statistics, approximation theory, and algorithmics. Ideas from all these areas blended to form a subject whose many successful applications have triggered a rapid growth during the last two decades. This is the first book to give a general overview of the theoretical foundations of the subject emphasizing the approximation theory, while still giving a balanced overview. It is based on courses taught by the authors, and is reasonably self-contained so will appeal to a broad spectrum of researchers in learning theory and adjacent fields. It will also serve as an introduction for graduate students and others entering the field, who wish to see how the problems raised in learning theory relate to other disciplines.

The Principles of Deep Learning Theory

The Principles of Deep Learning Theory
Author: Daniel A. Roberts
Publisher: Cambridge University Press
Total Pages: 473
Release: 2022-05-26
Genre: Computers
ISBN: 1316519333

This volume develops an effective theory approach to understanding deep neural networks of practical relevance.

Algebraic Geometry and Statistical Learning Theory

Algebraic Geometry and Statistical Learning Theory
Author: Sumio Watanabe
Publisher: Cambridge University Press
Total Pages: 295
Release: 2009-08-13
Genre: Computers
ISBN: 0521864674

Sure to be influential, Watanabe's book lays the foundations for the use of algebraic geometry in statistical learning theory. Many models/machines are singular: mixture models, neural networks, HMMs, Bayesian networks, stochastic context-free grammars are major examples. The theory achieved here underpins accurate estimation techniques in the presence of singularities.

Foundations of Machine Learning, second edition

Foundations of Machine Learning, second edition
Author: Mehryar Mohri
Publisher: MIT Press
Total Pages: 505
Release: 2018-12-25
Genre: Computers
ISBN: 0262351366

A new edition of a graduate-level machine learning textbook that focuses on the analysis and theory of algorithms. This book is a general introduction to machine learning that can serve as a textbook for graduate students and a reference for researchers. It covers fundamental modern topics in machine learning while providing the theoretical basis and conceptual tools needed for the discussion and justification of algorithms. It also describes several key aspects of the application of these algorithms. The authors aim to present novel theoretical tools and concepts while giving concise proofs even for relatively advanced topics. Foundations of Machine Learning is unique in its focus on the analysis and theory of algorithms. The first four chapters lay the theoretical foundation for what follows; subsequent chapters are mostly self-contained. Topics covered include the Probably Approximately Correct (PAC) learning framework; generalization bounds based on Rademacher complexity and VC-dimension; Support Vector Machines (SVMs); kernel methods; boosting; on-line learning; multi-class classification; ranking; regression; algorithmic stability; dimensionality reduction; learning automata and languages; and reinforcement learning. Each chapter ends with a set of exercises. Appendixes provide additional material including concise probability review. This second edition offers three new chapters, on model selection, maximum entropy models, and conditional entropy models. New material in the appendixes includes a major section on Fenchel duality, expanded coverage of concentration inequalities, and an entirely new entry on information theory. More than half of the exercises are new to this edition.

Machine Learning

Machine Learning
Author: Maria Johnsen
Publisher: Maria Johnsen
Total Pages: 550
Release: 2024-07-06
Genre: Computers
ISBN:

Machine learning has revolutionized industries, from healthcare to entertainment, by enhancing how we understand and interact with data. Despite its prevalence, mastering this field requires both theoretical knowledge and practical skills. This book bridges that gap, starting with foundational concepts and essential mathematics, then advancing through a wide range of algorithms and techniques. It covers supervised and unsupervised learning, neural networks, deep learning, and reinforcement learning, with clear explanations and practical examples. Real-world applications are highlighted through scenarios and case studies, demonstrating how to solve specific problems with machine learning. You'll find hands-on guides to popular tools and libraries like Python, Scikit-Learn, TensorFlow, Keras, and PyTorch, enabling you to build, evaluate, and deploy models effectively. The book explores cutting-edge topics like quantum machine learning and explainable AI, keeping you updated on the latest trends. Detailed case studies and capstone projects provide practical experience, guiding you through the entire machine learning process. This book, a labor of love born from extensive research and passion, aims to make machine learning accessible and engaging. Machine learning is about curiosity, creativity, and the pursuit of knowledge. Explore, experiment, and enjoy the journey. Thank you for choosing this book. I am excited to be part of your machine learning adventure and look forward to the incredible things you will achieve.