Introduction To Computational Mathematics (2nd Edition)

Introduction To Computational Mathematics (2nd Edition)
Author: Xin-she Yang
Publisher: World Scientific Publishing Company
Total Pages: 342
Release: 2014-11-26
Genre: Mathematics
ISBN: 9814635804

This unique book provides a comprehensive introduction to computational mathematics, which forms an essential part of contemporary numerical algorithms, scientific computing and optimization. It uses a theorem-free approach with just the right balance between mathematics and numerical algorithms. This edition covers all major topics in computational mathematics with a wide range of carefully selected numerical algorithms, ranging from the root-finding algorithm, numerical integration, numerical methods of partial differential equations, finite element methods, optimization algorithms, stochastic models, nonlinear curve-fitting to data modelling, bio-inspired algorithms and swarm intelligence. This book is especially suitable for both undergraduates and graduates in computational mathematics, numerical algorithms, scientific computing, mathematical programming, artificial intelligence and engineering optimization. Thus, it can be used as a textbook and/or reference book.

Computational Mathematical Programming

Computational Mathematical Programming
Author: Klaus Schittkowski
Publisher: Springer Science & Business Media
Total Pages: 455
Release: 2013-06-29
Genre: Mathematics
ISBN: 3642824501

This book contains the written versions of main lectures presented at the Advanced Study Institute (ASI) on Computational Mathematical Programming, which was held in Bad Windsheim, Germany F. R., from July 23 to August 2, 1984, under the sponsorship of NATO. The ASI was organized by the Committee on Algorithms (COAL) of the Mathematical Programming Society. Co-directors were Karla Hoffmann (National Bureau of Standards, Washington, U.S.A.) and Jan Teigen (Rabobank Nederland, Zeist, The Netherlands). Ninety participants coming from about 20 different countries attended the ASI and contributed their efforts to achieve a highly interesting and stimulating meeting. Since 1947 when the first linear programming technique was developed, the importance of optimization models and their mathematical solution methods has steadily increased, and now plays a leading role in applied research areas. The basic idea of optimization theory is to minimize (or maximize) a function of several variables subject to certain restrictions. This general mathematical concept covers a broad class of possible practical applications arising in mechanical, electrical, or chemical engineering, physics, economics, medicine, biology, etc. There are both industrial applications (e.g. design of mechanical structures, production plans) and applications in the natural, engineering, and social sciences (e.g. chemical equilibrium problems, christollography problems).

Mathematical Programming with Data Perturbations

Mathematical Programming with Data Perturbations
Author: Anthony V. Fiacco
Publisher: CRC Press
Total Pages: 460
Release: 1997-09-19
Genre: Mathematics
ISBN: 9780824700591

Presents research contributions and tutorial expositions on current methodologies for sensitivity, stability and approximation analyses of mathematical programming and related problem structures involving parameters. The text features up-to-date findings on important topics, covering such areas as the effect of perturbations on the performance of algorithms, approximation techniques for optimal control problems, and global error bounds for convex inequalities.

Recent Developments in Mathematical Programming

Recent Developments in Mathematical Programming
Author: Santosh Kumar
Publisher: CRC Press
Total Pages: 470
Release: 2022-01-27
Genre: Mathematics
ISBN: 1000657620

This work is concerned with theoretical developments in the area of mathematical programming, development of new algorithms and software and their applications in science and industry. It aims to expose recent mathematical developments to a larger audience in science and industry.

The Mathematical-Function Computation Handbook

The Mathematical-Function Computation Handbook
Author: Nelson H.F. Beebe
Publisher: Springer
Total Pages: 1145
Release: 2017-08-20
Genre: Computers
ISBN: 3319641107

This highly comprehensive handbook provides a substantial advance in the computation of elementary and special functions of mathematics, extending the function coverage of major programming languages well beyond their international standards, including full support for decimal floating-point arithmetic. Written with clarity and focusing on the C language, the work pays extensive attention to little-understood aspects of floating-point and integer arithmetic, and to software portability, as well as to important historical architectures. It extends support to a future 256-bit, floating-point format offering 70 decimal digits of precision. Select Topics and Features: references an exceptionally useful, author-maintained MathCW website, containing source code for the book’s software, compiled libraries for numerous systems, pre-built C compilers, and other related materials; offers a unique approach to covering mathematical-function computation using decimal arithmetic; provides extremely versatile appendices for interfaces to numerous other languages: Ada, C#, C++, Fortran, Java, and Pascal; presupposes only basic familiarity with computer programming in a common language, as well as early level algebra; supplies a library that readily adapts for existing scripting languages, with minimal effort; supports both binary and decimal arithmetic, in up to 10 different floating-point formats; covers a significant portion (with highly accurate implementations) of the U.S National Institute of Standards and Technology’s 10-year project to codify mathematical functions. This highly practical text/reference is an invaluable tool for advanced undergraduates, recording many lessons of the intermingled history of computer hardw are and software, numerical algorithms, and mathematics. In addition, professional numerical analysts and others will find the handbook of real interest and utility because it builds on research by the mathematical software community over the last four decades.

Mathematical Programming for Operations Researchers and Computer Scientists

Mathematical Programming for Operations Researchers and Computer Scientists
Author: Holzman
Publisher: CRC Press
Total Pages: 398
Release: 1981-06-01
Genre: Computers
ISBN: 9780824714994

This book covers the fundamentals of linear programming, extension of linear programming to discrete optimization methods, multi-objective functions, quadratic programming, geometric programming, and classical calculus methods for solving nonlinear programming problems.

Algorithmic Principles of Mathematical Programming

Algorithmic Principles of Mathematical Programming
Author: Ulrich Faigle
Publisher: Springer Science & Business Media
Total Pages: 360
Release: 2002-08-31
Genre: Computers
ISBN: 9781402008528

Algorithmic Principles of Mathematical Programming investigates the mathematical structures and principles underlying the design of efficient algorithms for optimization problems. Recent advances in algorithmic theory have shown that the traditionally separate areas of discrete optimization, linear programming, and nonlinear optimization are closely linked. This book offers a comprehensive introduction to the whole subject and leads the reader to the frontiers of current research. The prerequisites to use the book are very elementary. All the tools from numerical linear algebra and calculus are fully reviewed and developed. Rather than attempting to be encyclopedic, the book illustrates the important basic techniques with typical problems. The focus is on efficient algorithms with respect to practical usefulness. Algorithmic complexity theory is presented with the goal of helping the reader understand the concepts without having to become a theoretical specialist. Further theory is outlined and supplemented with pointers to the relevant literature. The book is equally suited for self-study for a motivated beginner and for a comprehensive course on the principles of mathematical programming within an applied mathematics or computer science curriculum at advanced undergraduate or graduate level. The presentation of the material is such that smaller modules on discrete optimization, linear programming, and nonlinear optimization can easily be extracted separately and used for shorter specialized courses on these subjects.

Programming Projects in C for Students of Engineering, Science, and Mathematics

Programming Projects in C for Students of Engineering, Science, and Mathematics
Author: Rouben Rostamian
Publisher: SIAM
Total Pages: 390
Release: 2014-09-03
Genre: Computers
ISBN: 161197349X

Like a pianist who practices from a book of Ÿtudes, readers of Programming Projects in C for Students of Engineering, Science, and Mathematics will learn by doing. Written as a tutorial on how to think about, organize, and implement programs in scientific computing, this book achieves its goal through an eclectic and wide-ranging collection of projects. Each project presents a problem and an algorithm for solving it. The reader is guided through implementing the algorithm in C and compiling and testing the results. It is not necessary to carry out the projects in sequential order. The projects?contain suggested algorithms and partially completed programs for implementing them to enable the reader to exercise and develop skills in scientific computing;?require only a working knowledge of undergraduate multivariable calculus, differential equations, and linear algebra; and?are written in platform-independent standard C, and the Unix command-line is used to illustrate compilation and execution. The primary audience of this book is graduate students in mathematics, engineering, and the sciences. The book will also be of interest to advanced undergraduates and working professionals who wish to exercise and hone their skills in programming mathematical algorithms in C. A working knowledge of the C programming language is assumed.

Building and Solving Mathematical Programming Models in Engineering and Science

Building and Solving Mathematical Programming Models in Engineering and Science
Author: Enrique Castillo
Publisher: John Wiley & Sons
Total Pages: 568
Release: 2011-10-24
Genre: Mathematics
ISBN: 0471461652

Fundamental concepts of mathematical modeling Modeling is one of the most effective, commonly used tools in engineering and the applied sciences. In this book, the authors deal with mathematical programming models both linear and nonlinear and across a wide range of practical applications. Whereas other books concentrate on standard methods of analysis, the authors focus on the power of modeling methods for solving practical problems-clearly showing the connection between physical and mathematical realities-while also describing and exploring the main concepts and tools at work. This highly computational coverage includes: * Discussion and implementation of the GAMS programming system * Unique coverage of compatibility * Illustrative examples that showcase the connection between model and reality * Practical problems covering a wide range of scientific disciplines, as well as hundreds of examples and end-of-chapter exercises * Real-world applications to probability and statistics, electrical engineering, transportation systems, and more Building and Solving Mathematical Programming Models in Engineering and Science is practically suited for use as a professional reference for mathematicians, engineers, and applied or industrial scientists, while also tutorial and illustrative enough for advanced students in mathematics or engineering.