Author | : Rodney O. Fox |
Publisher | : Cambridge University Press |
Total Pages | : 156 |
Release | : 2003-10-30 |
Genre | : Mathematics |
ISBN | : 9780521659079 |
Table of contents
Author | : Rodney O. Fox |
Publisher | : Cambridge University Press |
Total Pages | : 156 |
Release | : 2003-10-30 |
Genre | : Mathematics |
ISBN | : 9780521659079 |
Table of contents
Author | : Rodney O. Fox |
Publisher | : |
Total Pages | : 419 |
Release | : 2003 |
Genre | : Combustion |
ISBN | : 9780511556265 |
The current state of the art in computational models for turbulent reacting flows.
Author | : Lixing Zhou |
Publisher | : Butterworth-Heinemann |
Total Pages | : 343 |
Release | : 2018-01-25 |
Genre | : Technology & Engineering |
ISBN | : 0128134666 |
Theory and Modeling of Dispersed Multiphase Turbulent Reacting Flows gives a systematic account of the fundamentals of multiphase flows, turbulent flows and combustion theory. It presents the latest advances of models and theories in the field of dispersed multiphase turbulent reacting flow, covering basic equations of multiphase turbulent reacting flows, modeling of turbulent flows, modeling of multiphase turbulent flows, modeling of turbulent combusting flows, and numerical methods for simulation of multiphase turbulent reacting flows, etc. The book is ideal for graduated students, researchers and engineers in many disciplines in power and mechanical engineering. - Provides a combination of multiphase fluid dynamics, turbulence theory and combustion theory - Covers physical phenomena, numerical modeling theory and methods, and their applications - Presents applications in a wide range of engineering facilities, such as utility and industrial furnaces, gas-turbine and rocket engines, internal combustion engines, chemical reactors, and cyclone separators, etc.
Author | : National Research Council |
Publisher | : National Academies Press |
Total Pages | : 145 |
Release | : 1991-02-01 |
Genre | : Technology & Engineering |
ISBN | : 0309046483 |
Computational mechanics is a scientific discipline that marries physics, computers, and mathematics to emulate natural physical phenomena. It is a technology that allows scientists to study and predict the performance of various productsâ€"important for research and development in the industrialized world. This book describes current trends and future research directions in computational mechanics in areas where gaps exist in current knowledge and where major advances are crucial to continued technological developments in the United States.
Author | : R. S. Cant |
Publisher | : Imperial College Press |
Total Pages | : 192 |
Release | : 2008 |
Genre | : Science |
ISBN | : 1860947786 |
Provides physical intuition and key entries to the body of literature. This book includes historical perspective of the theories.
Author | : R. Borghi |
Publisher | : Springer |
Total Pages | : 950 |
Release | : 2012-10-20 |
Genre | : Science |
ISBN | : 9781461396321 |
Turbulent reactive flows are of common occurrance in combustion engineering, chemical reactor technology and various types of engines producing power and thrust utilizing chemical and nuclear fuels. Pollutant formation and dispersion in the atmospheric environment and in rivers, lakes and ocean also involve interactions between turbulence, chemical reactivity and heat and mass transfer processes. Considerable advances have occurred over the past twenty years in the understanding, analysis, measurement, prediction and control of turbulent reactive flows. Two main contributors to such advances are improvements in instrumentation and spectacular growth in computation: hardware, sciences and skills and data processing software, each leading to developments in others. Turbulence presents several features that are situation-specific. Both for that reason and a number of others, it is yet difficult to visualize a so-called solution of the turbulence problem or even a generalized approach to the problem. It appears that recognition of patterns and structures in turbulent flow and their study based on considerations of stability, interactions, chaos and fractal character may be opening up an avenue of research that may be leading to a generalized approach to classification and analysis and, possibly, prediction of specific processes in the flowfield. Predictions for engineering use, on the other hand, can be foreseen for sometime to come to depend upon modeling of selected features of turbulence at various levels of sophistication dictated by perceived need and available capability.
Author | : Tarek Echekki |
Publisher | : Springer Science & Business Media |
Total Pages | : 496 |
Release | : 2010-12-25 |
Genre | : Technology & Engineering |
ISBN | : 9400704127 |
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.
Author | : Stefan Heinz |
Publisher | : Springer Science & Business Media |
Total Pages | : 232 |
Release | : 2013-03-09 |
Genre | : Science |
ISBN | : 3662100223 |
The simulation of technological and environmental flows is very important for many industrial developments. A major challenge related to their modeling is to involve the characteristic turbulence that appears in most of these flows. The traditional way to tackle this question is to use deterministic equations where the effects of turbulence are directly parametrized, i. e. , assumed as functions of the variables considered. However, this approach often becomes problematic, in particular if reacting flows have to be simulated. In many cases, it turns out that appropriate approximations for the closure of deterministic equations are simply unavailable. The alternative to the traditional way of modeling turbulence is to construct stochastic models which explain the random nature of turbulence. The application of such models is very attractive: one can overcome the closure problems that are inherent to deterministic methods on the basis of relatively simple and physically consistent models. Thus, from a general point of view, the use of stochastic methods for turbulence simulations seems to be the optimal way to solve most of the problems related to industrial flow simulations. However, it turns out that this is not as simple as it looks at first glance. The first question concerns the numerical solution of stochastic equations for flows of environmental and technological interest. To calculate industrial flows, 3 one often has to consider a number of grid cells that is of the order of 100 .
Author | : Daniele L. Marchisio |
Publisher | : Cambridge University Press |
Total Pages | : 547 |
Release | : 2013-03-28 |
Genre | : Technology & Engineering |
ISBN | : 1107328179 |
Providing a clear description of the theory of polydisperse multiphase flows, with emphasis on the mesoscale modelling approach and its relationship with microscale and macroscale models, this all-inclusive introduction is ideal whether you are working in industry or academia. Theory is linked to practice through discussions of key real-world cases (particle/droplet/bubble coalescence, break-up, nucleation, advection and diffusion and physical- and phase-space), providing valuable experience in simulating systems that can be applied to your own applications. Practical cases of QMOM, DQMOM, CQMOM, EQMOM and ECQMOM are also discussed and compared, as are realizable finite-volume methods. This provides the tools you need to use quadrature-based moment methods, choose from the many available options, and design high-order numerical methods that guarantee realizable moment sets. In addition to the numerous practical examples, MATLAB® scripts for several algorithms are also provided, so you can apply the methods described to practical problems straight away.