Computational Imaging

Computational Imaging
Author: Ayush Bhandari
Publisher: MIT Press
Total Pages: 482
Release: 2022-10-25
Genre: Technology & Engineering
ISBN: 0262046474

A comprehensive and up-to-date textbook and reference for computational imaging, which combines vision, graphics, signal processing, and optics. Computational imaging involves the joint design of imaging hardware and computer algorithms to create novel imaging systems with unprecedented capabilities. In recent years such capabilities include cameras that operate at a trillion frames per second, microscopes that can see small viruses long thought to be optically irresolvable, and telescopes that capture images of black holes. This text offers a comprehensive and up-to-date introduction to this rapidly growing field, a convergence of vision, graphics, signal processing, and optics. It can be used as an instructional resource for computer imaging courses and as a reference for professionals. It covers the fundamentals of the field, current research and applications, and light transport techniques. The text first presents an imaging toolkit, including optics, image sensors, and illumination, and a computational toolkit, introducing modeling, mathematical tools, model-based inversion, data-driven inversion techniques, and hybrid inversion techniques. It then examines different modalities of light, focusing on the plenoptic function, which describes degrees of freedom of a light ray. Finally, the text outlines light transport techniques, describing imaging systems that obtain micron-scale 3D shape or optimize for noise-free imaging, optical computing, and non-line-of-sight imaging. Throughout, it discusses the use of computational imaging methods in a range of application areas, including smart phone photography, autonomous driving, and medical imaging. End-of-chapter exercises help put the material in context.

Optical Imaging and Spectroscopy

Optical Imaging and Spectroscopy
Author: David J. Brady
Publisher: John Wiley & Sons
Total Pages: 530
Release: 2009-04-27
Genre: Science
ISBN: 0470443723

An essential reference for optical sensor system design This is the first text to present an integrated view of the optical and mathematical analysis tools necessary to understand computational optical system design. It presents the foundations of computational optical sensor design with a focus entirely on digital imaging and spectroscopy. It systematically covers: Coded aperture and tomographic imaging Sampling and transformations in optical systems, including wavelets and generalized sampling techniques essential to digital system analysis Geometric, wave, and statistical models of optical fields The basic function of modern optical detectors and focal plane arrays Practical strategies for coherence measurement in imaging system design The sampling theory of digital imaging and spectroscopy for both conventional and emerging compressive and generalized measurement strategies Measurement code design Linear and nonlinear signal estimation The book concludes with a review of numerous design strategies in spectroscopy and imaging and clearly outlines the benefits and limits of each approach, including coded aperture and imaging spectroscopy, resonant and filter-based systems, and integrated design strategies to improve image resolution, depth of field, and field of view. Optical Imaging and Spectroscopy is an indispensable textbook for advanced undergraduate and graduate courses in optical sensor design. In addition to its direct applicability to optical system design, unique perspectives on computational sensor design presented in the text will be of interest for sensor designers in radio and millimeter wave, X-ray, and acoustic systems.

Fourier Optics and Computational Imaging

Fourier Optics and Computational Imaging
Author: Kedar Khare
Publisher: John Wiley & Sons
Total Pages: 312
Release: 2015-09-21
Genre: Technology & Engineering
ISBN: 1118900340

This book covers both the mathematics of inverse problems and optical systems design, and includes a review of the mathematical methods and Fourier optics. The first part of the book deals with the mathematical tools in detail with minimal assumption about prior knowledge on the part of the reader. The second part of the book discusses concepts in optics, particularly propagation of optical waves and coherence properties of optical fields that form the basis of the computational models used for image recovery. The third part provides a discussion of specific imaging systems that illustrate the power of the hybrid computational imaging model in enhancing imaging performance. A number of exercises are provided for readers to develop further understanding of computational imaging. While the focus of the book is largely on optical imaging systems, the key concepts are discussed in a fairly general manner so as to provide useful background for understanding the mechanisms of a diverse range of imaging modalities.

Imaging Optics

Imaging Optics
Author: Joseph Braat
Publisher: Cambridge University Press
Total Pages: 987
Release: 2019-05-02
Genre: Medical
ISBN: 1108428088

This comprehensive and self-contained text for researchers and professionals presents a detailed account of optical imaging from the viewpoint of both ray and wave optics.

Computational Fourier Optics

Computational Fourier Optics
Author: Jim Bernard Breckinridge
Publisher: SPIE-International Society for Optical Engineering
Total Pages: 232
Release: 2011
Genre: Science
ISBN: 9780819482044

Computational Fourier Optics is a text that shows the reader in a tutorial form how to implement Fourier optical theory and analytic methods on the computer. A primary objective is to give students of Fourier optics the capability of programming their own basic wave optic beam propagations and imaging simulations. The book will also be of interest to professional engineers and physicists learning Fourier optics simulation techniques-either as a self-study text or a text for a short course. For more advanced study, the latter chapters and appendices provide methods and examples for modeling beams and pupil functions with more complicated structure, aberrations, and partial coherence. For a student in a course on Fourier optics, this book is a concise, accessible, and practical companion to any of several excellent textbooks on Fourier optical theory.

5th International Symposium of Space Optical Instruments and Applications

5th International Symposium of Space Optical Instruments and Applications
Author: H. Paul Urbach
Publisher: Springer Nature
Total Pages: 410
Release: 2020-01-30
Genre: Science
ISBN: 3030273008

This book gathers selected and expanded contributions presented at the 5th Symposium on Space Optical Instruments and Applications, which was held in Beijing, China, on September 5–7, 2018. This conference series is organized by the Sino-Holland Space Optical Instruments Laboratory, a cooperative platform between China and the Netherlands. The symposium focused on key technological problems regarding optical instruments and their applications in a space context. It covered the latest developments, experiments and results on the theory, instrumentation and applications of space optics. The book is split into five main sections: The first covers optical remote sensing system design, the second focuses on advanced optical system design, and the third addresses remote sensor calibration and measurement. Remote sensing data processing and information extraction are then presented, followed by a final section on remote sensing data applications.

Computational Optical Imaging

Computational Optical Imaging
Author: Zhengjun Liu
Publisher: Springer
Total Pages: 0
Release: 2024-05-28
Genre: Science
ISBN: 9789819714544

This book highlights a comprehensive introduction to the principles and calculation methods of computational optical imaging. Integrating optical imaging and computing technology to achieve significant performance improvements, computational optical imaging has become an active research field in optics. It has given rise to the emerging of new concepts such as computational imaging, computational measurement and computational photography. As high-performance image detectors make image measurements discrete and digital, images are mostly recorded in the form of discrete data, almost replacing the continuous medium used for pattern recording. Computational optical imaging technology has become an effective way for people to study microscopic imaging. At present, different imaging systems are composed of continuous optical elements such as lenses and prisms or discrete optical elements such as spatial light modulators or digital micro-mirror devices. The current computing technology has permeated all aspects of imaging systems and gradually promotes the digitization of optical imaging systems. This book summarizes the representative work done in this field and introduces the latest results. Computing technology plays an important bridging role between theories of optics and experimental systems, which inspires more comprehensive and in-depth research. It has the advantages of high repeatability, flexibility, strong computing power and low cost. In this multidisciplinary field, researchers in computer science, optics and information science have joined together to extend its depth and breadth. Targeting cutting-edge issues to be solved in computational optics, this book introduces a variety of methods that involve theoretical innovations and technical breakthroughs in imaging resolution, the field of view, imaging speed, and computing speed. It intends to provide a handy reference and technical support for graduate students, researchers and professionals engaged in the study and practice of computational optical imaging.

Contemporary Optical Image Processing with MATLAB

Contemporary Optical Image Processing with MATLAB
Author: T.-C. Poon
Publisher: Elsevier
Total Pages: 270
Release: 2001-04-18
Genre: Science
ISBN: 9780080529820

This book serves two purposes: first to introduce readers to the concepts of geometrical optics, physical optics and techniques of optical imaging and image processing, and secondly to provide them with experience in modeling the theory and applications using the commonly used software tool MATLAB®. A comprehensively revised version of the authors' earlier book Principles of Applied Optics, Contemporary Optical Image Processing with MATLAB brings out the systems aspect of optics. This includes ray optics, Fourier Optics, Gaussian beam propagation, the split-step beam propagation method, holography and complex spatial filtering, ray theory of holograms, optical scanning holography, acousto-optic image processing, edge enhancement and correlation using photorefractive materials, holographic phase distortion correction, to name a few. MATLAB examples are given throughout the text. MATLAB is emphasized since it is now a widely accepted software tool very routinely used in signal processing. A sizeable portion of this book is based on the authors' own in-class presentations, as well as research in the area. Instructive problems and MATLAB assignments are included at the end of each Chapter to enhance even further the value of this book to its readers. MATLAB is a registered trademark of The MathWorks, Inc.