Content-Based Image and Video Retrieval

Content-Based Image and Video Retrieval
Author: Oge Marques
Publisher: Springer Science & Business Media
Total Pages: 189
Release: 2012-12-06
Genre: Computers
ISBN: 1461509874

Content-Based Image And Video Retrieval addresses the basic concepts and techniques for designing content-based image and video retrieval systems. It also discusses a variety of design choices for the key components of these systems. This book gives a comprehensive survey of the content-based image retrieval systems, including several content-based video retrieval systems. The survey includes both research and commercial content-based retrieval systems. Content-Based Image And Video Retrieval includes pointers to two hundred representative bibliographic references on this field, ranging from survey papers to descriptions of recent work in the area, entire books and more than seventy websites. Finally, the book presents a detailed case study of designing MUSE–a content-based image retrieval system developed at Florida Atlantic University in Boca Raton, Florida.

State-of-the-Art in Content-Based Image and Video Retrieval

State-of-the-Art in Content-Based Image and Video Retrieval
Author: Remco C. Veltkamp
Publisher: Springer Science & Business Media
Total Pages: 349
Release: 2013-04-17
Genre: Computers
ISBN: 9401596646

Images and video play a crucial role in visual information systems and multimedia. There is an extraordinary number of applications of such systems in entertainment, business, art, engineering, and science. Such applications often involved large image and video collections, and therefore, searching for images and video in large collections is becoming an important operation. Because of the size of such databases, efficiency is crucial. We strongly believe that image and video retrieval need an integrated approach from fields such as image processing, shape processing, perception, database indexing, visualization, and querying, etc. This book contains a selection of results that was presented at the Dagstuhl Seminar on Content-Based Image and Video Retrieval, in December 1999. The purpose of this seminar was to bring together people from the various fields, in order to promote information exchange and interaction among researchers who are interested in various aspects of accessing the content of image and video data. The book provides an overview of the state of the art in content-based image and video retrieval. The topics covered by the chapters are integrated system aspects, as well as techniques from image processing, computer vision, multimedia, databases, graphics, signal processing, and information theory. The book will be of interest to researchers and professionals in the fields of multimedia, visual information (database) systems, computer vision, and information retrieval.

Content-Based Video Retrieval

Content-Based Video Retrieval
Author: Milan Petković
Publisher: Springer Science & Business Media
Total Pages: 168
Release: 2003-10-31
Genre: Computers
ISBN: 9781402076176

The area of content-based video retrieval is a very hot area both for research and for commercial applications. In order to design effective video databases for applications such as digital libraries, video production, and a variety of Internet applications, there is a great need to develop effective techniques for content-based video retrieval. One of the main issues in this area of research is how to bridge the semantic gap between low-Ievel features extracted from a video (such as color, texture, shape, motion, and others) and semantics that describe video concept on a higher level. In this book, Dr. Milan Petkovi6 and Prof. Dr. Willem Jonker have addressed this issue by developing and describing several innovative techniques to bridge the semantic gap. The main contribution of their research, which is the core of the book, is the development of three techniques for bridging the semantic gap: (1) a technique that uses the spatio-temporal extension of the Cobra framework, (2) a technique based on hidden Markov models, and (3) a technique based on Bayesian belief networks. To evaluate performance of these techniques, the authors have conducted a number of experiments using real video data. The book also discusses domains solutions versus general solution of the problem. Petkovi6 and Jonker proposed a solution that allows a system to be applied in multiple domains with minimal adjustments. They also designed and described a prototype video database management system, which is based on techniques they proposed in the book.

Multimedia Information Retrieval and Management

Multimedia Information Retrieval and Management
Author: David Feng
Publisher: Springer Science & Business Media
Total Pages: 494
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 3662053004

Everything you ever wanted to know about multimedia retrieval and management. This comprehensive book offers a full picture of the cutting-edge technologies necessary for a profound introduction to the field. Leading experts also cover a broad range of practical applications.

Multimedia Systems and Content-based Image Retrieval

Multimedia Systems and Content-based Image Retrieval
Author: Sagarmay Deb
Publisher: IGI Global
Total Pages: 407
Release: 2004-01-01
Genre: Technology & Engineering
ISBN: 1591401569

Business intelligence has always been considered an essential ingredient for success. However, it is not until recently that the technology has enabled organizations to generate and deploy intelligence for global competition. These technologies can be leveraged to create the intelligent enterprises of the 21st century that will not only provide excellent and customized services to their customers, but will also create business efficiency for building relationships with suppliers and other business partners on a long term basis. Creating such intelligent enterprises requires the understanding and integration of diverse enterprise components into cohesive intelligent systems. Anticipating that future enterprises need to become intelligent, Intelligent Enterprises of the 21st Century brings together the experiences and knowledge from many parts of the world to provide a compendium of high quality theoretical and applied concepts, methodologies, and techniques that help diffuse knowledge and skills required to create and manage intelligent enterprises of the 21st century for gaining sustainable competitive advantage in a global environment. This book is a comprehensive compilation of the state of the art vision and thought processes needed to design and manage globally competitive business organizations.

Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014

Proceedings of the 3rd International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2014
Author: Suresh Chandra Satapathy
Publisher: Springer
Total Pages: 783
Release: 2014-10-31
Genre: Technology & Engineering
ISBN: 3319120123

This volume contains 87 papers presented at FICTA 2014: Third International Conference on Frontiers in Intelligent Computing: Theory and Applications. The conference was held during 14-15, November, 2014 at Bhubaneswar, Odisha, India. This volume contains papers mainly focused on Network and Information Security, Grid Computing and Clod Computing, Cyber Security and Digital Forensics, Computer Vision, Signal, Image & Video Processing, Software Engineering in Multidisciplinary Domains and Ad-hoc and Wireless Sensor Networks.

Handbook on Neural Information Processing

Handbook on Neural Information Processing
Author: Monica Bianchini
Publisher: Springer Science & Business Media
Total Pages: 547
Release: 2013-04-12
Genre: Technology & Engineering
ISBN: 3642366570

This handbook presents some of the most recent topics in neural information processing, covering both theoretical concepts and practical applications. The contributions include: Deep architectures Recurrent, recursive, and graph neural networks Cellular neural networks Bayesian networks Approximation capabilities of neural networks Semi-supervised learning Statistical relational learning Kernel methods for structured data Multiple classifier systems Self organisation and modal learning Applications to content-based image retrieval, text mining in large document collections, and bioinformatics This book is thought particularly for graduate students, researchers and practitioners, willing to deepen their knowledge on more advanced connectionist models and related learning paradigms.

Content-based Retrieval of Medical Images

Content-based Retrieval of Medical Images
Author: Paulo Mazzoncini de Azevedo-Marques
Publisher: Springer Nature
Total Pages: 125
Release: 2022-06-01
Genre: Technology & Engineering
ISBN: 3031016513

Content-based image retrieval (CBIR) is the process of retrieval of images from a database that are similar to a query image, using measures derived from the images themselves, rather than relying on accompanying text or annotation. To achieve CBIR, the contents of the images need to be characterized by quantitative features; the features of the query image are compared with the features of each image in the database and images having high similarity with respect to the query image are retrieved and displayed. CBIR of medical images is a useful tool and could provide radiologists with assistance in the form of a display of relevant past cases. One of the challenging aspects of CBIR is to extract features from the images to represent their visual, diagnostic, or application-specific information content. In this book, methods are presented for preprocessing, segmentation, landmarking, feature extraction, and indexing of mammograms for CBIR. The preprocessing steps include anisotropic diffusion and the Wiener filter to remove noise and perform image enhancement. Techniques are described for segmentation of the breast and fibroglandular disk, including maximum entropy, a moment-preserving method, and Otsu's method. Image processing techniques are described for automatic detection of the nipple and the edge of the pectoral muscle via analysis in the Radon domain. By using the nipple and the pectoral muscle as landmarks, mammograms are divided into their internal, external, upper, and lower parts for further analysis. Methods are presented for feature extraction using texture analysis, shape analysis, granulometric analysis, moments, and statistical measures. The CBIR system presented provides options for retrieval using the Kohonen self-organizing map and the k-nearest-neighbor method. Methods are described for inclusion of expert knowledge to reduce the semantic gap in CBIR, including the query point movement method for relevance feedback (RFb). Analysis of performance is described in terms of precision, recall, and relevance-weighted precision of retrieval. Results of application to a clinical database of mammograms are presented, including the input of expert radiologists into the CBIR and RFb processes. Models are presented for integration of CBIR and computer-aided diagnosis (CAD) with a picture archival and communication system (PACS) for efficient workflow in a hospital. Table of Contents: Introduction to Content-based Image Retrieval / Mammography and CAD of Breast Cancer / Segmentation and Landmarking of Mammograms / Feature Extraction and Indexing of Mammograms / Content-based Retrieval of Mammograms / Integration of CBIR and CAD into Radiological Workflow