Control and Nonlinearity

Control and Nonlinearity
Author: Jean-Michel Coron
Publisher: American Mathematical Soc.
Total Pages: 442
Release: 2007
Genre: Mathematics
ISBN: 0821849182

This book presents methods to study the controllability and the stabilization of nonlinear control systems in finite and infinite dimensions. The emphasis is put on specific phenomena due to nonlinearities. In particular, many examples are given where nonlinearities turn out to be essential to get controllability or stabilization. Various methods are presented to study the controllability or to construct stabilizing feedback laws. The power of these methods is illustrated by numerous examples coming from such areas as celestial mechanics, fluid mechanics, and quantum mechanics. The book is addressed to graduate students in mathematics or control theory, and to mathematicians or engineers with an interest in nonlinear control systems governed by ordinary or partial differential equations.

Nonlinear Control Systems

Nonlinear Control Systems
Author: Horacio Márquez
Publisher: Wiley-Interscience
Total Pages: 376
Release: 2003-04-25
Genre: Science
ISBN: 9780471427995

Provides complete coverage of both the Lyapunov and Input-Output stability theories, ina readable, concise manner. * Supplies an introduction to the popular backstepping approach to nonlinear control design * Gives a thorough discussion of the concept of input-to-state stability * Includes a discussion of the fundamentals of feedback linearization and related results. * Details complete coverage of the fundamentals of dissipative system's theory and its application in the so-called L2gain control prooblem, for the first time in an introductory level textbook. * Contains a thorough discussion of nonlinear observers, a very important problem, not commonly encountered in textbooksat this level. *An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Nonlinear Control Systems

Nonlinear Control Systems
Author: Alberto Isidori
Publisher: Springer Science & Business Media
Total Pages: 557
Release: 2013-04-17
Genre: Technology & Engineering
ISBN: 1846286158

The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985.

Analysis and Control of Nonlinear Systems

Analysis and Control of Nonlinear Systems
Author: Jean Levine
Publisher: Springer Science & Business Media
Total Pages: 322
Release: 2009-05-28
Genre: Technology & Engineering
ISBN: 3642008399

This book examines control of nonlinear systems. Coverage ranges from mathematical system theory to practical industrial control applications. The author offers web-based videos illustrating some dynamical aspects and case studies in simulation.

Nonlinear Control Systems and Power System Dynamics

Nonlinear Control Systems and Power System Dynamics
Author: Qiang Lu
Publisher: Springer Science & Business Media
Total Pages: 398
Release: 2013-04-17
Genre: Mathematics
ISBN: 1475733127

Nonlinear Control Systems and Power System Dynamics presents a comprehensive description of nonlinear control of electric power systems using nonlinear control theory, which is developed by the differential geometric approach and nonlinear robust control method. This book explains in detail the concepts, theorems and algorithms in nonlinear control theory, illustrated by step-by-step examples. In addition, all the mathematical formulation involved in deriving the nonlinear control laws of power systems are sufficiently presented. Considerations and cautions involved in applying nonlinear control theory to practical engineering control designs are discussed and special attention is given to the implementation of nonlinear control laws using microprocessors. Nonlinear Control Systems and Power System Dynamics serves as a text for advanced level courses and is an excellent reference for engineers and researchers who are interested in the application of modern nonlinear control theory to practical engineering control designs.

Nonlinear and Optimal Control Theory

Nonlinear and Optimal Control Theory
Author: Andrei A. Agrachev
Publisher: Springer
Total Pages: 368
Release: 2008-06-24
Genre: Science
ISBN: 3540776532

The lectures gathered in this volume present some of the different aspects of Mathematical Control Theory. Adopting the point of view of Geometric Control Theory and of Nonlinear Control Theory, the lectures focus on some aspects of the Optimization and Control of nonlinear, not necessarily smooth, dynamical systems. Specifically, three of the five lectures discuss respectively: logic-based switching control, sliding mode control and the input to the state stability paradigm for the control and stability of nonlinear systems. The remaining two lectures are devoted to Optimal Control: one investigates the connections between Optimal Control Theory, Dynamical Systems and Differential Geometry, while the second presents a very general version, in a non-smooth context, of the Pontryagin Maximum Principle. The arguments of the whole volume are self-contained and are directed to everyone working in Control Theory. They offer a sound presentation of the methods employed in the control and optimization of nonlinear dynamical systems.

Analysis and Control of Nonlinear Process Systems

Analysis and Control of Nonlinear Process Systems
Author: Katalin M. Hangos
Publisher: Springer Science & Business Media
Total Pages: 325
Release: 2006-04-18
Genre: Mathematics
ISBN: 185233861X

This straightforward text makes the complicated but powerful methods of non-linear control accessible to process engineers. Not only does it cover the necessary mathematics, but it consistently refers to the widely-known finite-dimensional linear time-invariant continuous case as a basis for extension to the nonlinear situation.

Nonlinear Optimal Control Theory

Nonlinear Optimal Control Theory
Author: Leonard David Berkovitz
Publisher: CRC Press
Total Pages: 394
Release: 2012-08-25
Genre: Mathematics
ISBN: 1466560266

Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also discusses Hamilton-Jacobi theory. By providing a sufficient and rigorous treatment of finite dimensional control problems, the book equips readers with the foundation to deal with other types of control problems, such as those governed by stochastic differential equations, partial differential equations, and differential games.

Nonlinear Control of Engineering Systems

Nonlinear Control of Engineering Systems
Author: Warren E. Dixon
Publisher: Springer Science & Business Media
Total Pages: 410
Release: 2013-06-29
Genre: Technology & Engineering
ISBN: 1461200318

This practical yet rigorous book provides a development of nonlinear, Lyapunov-based tools and their use in the solution of control-theoretic problems. Rich in motivating examples and new design techniques, the text balances theoretical foundations and real-world implementation.