Data Assimilation for the Geosciences

Data Assimilation for the Geosciences
Author: Steven J. Fletcher
Publisher: Elsevier
Total Pages: 978
Release: 2017-03-10
Genre: Science
ISBN: 0128044845

Data Assimilation for the Geosciences: From Theory to Application brings together all of the mathematical,statistical, and probability background knowledge needed to formulate data assimilation systems in one place. It includes practical exercises for understanding theoretical formulation and presents some aspects of coding the theory with a toy problem. The book also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to the atmosphere, oceans, as well as the land surface and other geophysical situations. It offers a comprehensive presentation of the subject, from basic principles to advanced methods, such as Particle Filters and Markov-Chain Monte-Carlo methods. Additionally, Data Assimilation for the Geosciences: From Theory to Application covers the applications of data assimilation techniques in various disciplines of the geosciences, making the book useful to students, teachers, and research scientists. Includes practical exercises, enabling readers to apply concepts in a theoretical formulation Offers explanations for how to code certain parts of the theory Presents a step-by-step guide on how, and why, data assimilation works and can be used

Data Assimilation for the Geosciences

Data Assimilation for the Geosciences
Author: Steven J. Fletcher
Publisher: Elsevier
Total Pages: 1130
Release: 2022-11-16
Genre: Science
ISBN: 0323972535

Data Assimilation for the Geosciences: From Theory to Application, Second Edition brings together all of the mathematical and statistical background knowledge needed to formulate data assimilation systems into one place. It includes practical exercises enabling readers to apply theory in both a theoretical formulation as well as teach them how to code the theory with toy problems to verify their understanding. It also demonstrates how data assimilation systems are implemented in larger scale fluid dynamical problems related to land surface, the atmosphere, ocean and other geophysical situations. The second edition of Data Assimilation for the Geosciences has been revised with up to date research that is going on in data assimilation, as well as how to apply the techniques. The new edition features an introduction of how machine learning and artificial intelligence are interfacing and aiding data assimilation. In addition to appealing to students and researchers across the geosciences, this now also appeals to new students and scientists in the field of data assimilation as it will now have even more information on the techniques, research, and applications, consolidated into one source. - Includes practical exercises and solutions enabling readers to apply theory in both a theoretical formulation as well as enabling them to code theory - Provides the mathematical and statistical background knowledge needed to formulate data assimilation systems into one place - New to this edition: covers new topics such as Observing System Experiments (OSE) and Observing System Simulation Experiments; and expanded approaches for machine learning and artificial intelligence

Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)

Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. II)
Author: Seon Ki Park
Publisher: Springer Science & Business Media
Total Pages: 736
Release: 2013-05-22
Genre: Science
ISBN: 3642350887

This book contains the most recent progress in data assimilation in meteorology, oceanography and hydrology including land surface. It spans both theoretical and applicative aspects with various methodologies such as variational, Kalman filter, ensemble, Monte Carlo and artificial intelligence methods. Besides data assimilation, other important topics are also covered including targeting observation, sensitivity analysis, and parameter estimation. The book will be useful to individual researchers as well as graduate students for a reference in the field of data assimilation.

Data Assimilation

Data Assimilation
Author: Geir Evensen
Publisher: Springer Science & Business Media
Total Pages: 285
Release: 2006-12-22
Genre: Science
ISBN: 3540383018

This book reviews popular data-assimilation methods, such as weak and strong constraint variational methods, ensemble filters and smoothers. The author shows how different methods can be derived from a common theoretical basis, as well as how they differ or are related to each other, and which properties characterize them, using several examples. Readers will appreciate the included introductory material and detailed derivations in the text, and a supplemental web site.

Data Assimilation

Data Assimilation
Author: William Lahoz
Publisher: Springer Science & Business Media
Total Pages: 710
Release: 2010-07-23
Genre: Science
ISBN: 3540747036

Data assimilation methods were largely developed for operational weather forecasting, but in recent years have been applied to an increasing range of earth science disciplines. This book will set out the theoretical basis of data assimilation with contributions by top international experts in the field. Various aspects of data assimilation are discussed including: theory; observations; models; numerical weather prediction; evaluation of observations and models; assessment of future satellite missions; application to components of the Earth System. References are made to recent developments in data assimilation theory (e.g. Ensemble Kalman filter), and to novel applications of the data assimilation method (e.g. ionosphere, Mars data assimilation).

Data Assimilation

Data Assimilation
Author: Kody Law
Publisher: Springer
Total Pages: 256
Release: 2015-09-05
Genre: Mathematics
ISBN: 3319203258

This book provides a systematic treatment of the mathematical underpinnings of work in data assimilation, covering both theoretical and computational approaches. Specifically the authors develop a unified mathematical framework in which a Bayesian formulation of the problem provides the bedrock for the derivation, development and analysis of algorithms; the many examples used in the text, together with the algorithms which are introduced and discussed, are all illustrated by the MATLAB software detailed in the book and made freely available online. The book is organized into nine chapters: the first contains a brief introduction to the mathematical tools around which the material is organized; the next four are concerned with discrete time dynamical systems and discrete time data; the last four are concerned with continuous time dynamical systems and continuous time data and are organized analogously to the corresponding discrete time chapters. This book is aimed at mathematical researchers interested in a systematic development of this interdisciplinary field, and at researchers from the geosciences, and a variety of other scientific fields, who use tools from data assimilation to combine data with time-dependent models. The numerous examples and illustrations make understanding of the theoretical underpinnings of data assimilation accessible. Furthermore, the examples, exercises and MATLAB software, make the book suitable for students in applied mathematics, either through a lecture course, or through self-study.

Data Assimilation: Methods, Algorithms, and Applications

Data Assimilation: Methods, Algorithms, and Applications
Author: Mark Asch
Publisher: SIAM
Total Pages: 310
Release: 2016-12-29
Genre: Mathematics
ISBN: 1611974542

Data assimilation is an approach that combines observations and model output, with the objective of improving the latter. This book places data assimilation into the broader context of inverse problems and the theory, methods, and algorithms that are used for their solution. It provides a framework for, and insight into, the inverse problem nature of data assimilation, emphasizing why and not just how. Methods and diagnostics are emphasized, enabling readers to readily apply them to their own field of study. Readers will find a comprehensive guide that is accessible to nonexperts; numerous examples and diverse applications from a broad range of domains, including geophysics and geophysical flows, environmental acoustics, medical imaging, mechanical and biomedical engineering, economics and finance, and traffic control and urban planning; and the latest methods for advanced data assimilation, combining variational and statistical approaches.

Advanced Data Assimilation for Geosciences

Advanced Data Assimilation for Geosciences
Author: Marc Bocquet
Publisher: Lecture Notes of the Les Houch
Total Pages: 609
Release: 2014
Genre: Science
ISBN: 0198723849

Data assimilation aims at determining as accurately as possible the state of a dynamical system by combining heterogeneous sources of information in an optimal way. Generally speaking, the mathematical methods of data assimilation describe algorithms for forming optimal combinations of observations of a system, a numerical model that describes its evolution, and appropriate prior information. Data assimilation has a long history of application to high-dimensional geophysical systems dating back to the 1960s, with application to the estimation of initial conditions for weather forecasts. It has become a major component of numerical forecasting systems in geophysics, and an intensive field of research, with numerous additional applications in oceanography, atmospheric chemistry, and extensions to other geophysical sciences. The physical complexity and the high dimensionality of geophysical systems have led the community of geophysics to make significant contributions to the fundamental theory of data assimilation. This book gathers notes from lectures and seminars given by internationally recognized scientists during a three-week school held in the Les Houches School of physics in 2012, on theoretical and applied data assimilation. It is composed of (i) a series of main lectures, presenting the fundamentals of the most commonly used methods, and the information theory background required to understand and evaluate the role of observations; (ii) a series of specialized lectures, addressing various aspects of data assimilation in detail, from the most recent developments of the theory to the specificities of various thematic applications.

Probabilistic Forecasting and Bayesian Data Assimilation

Probabilistic Forecasting and Bayesian Data Assimilation
Author: Sebastian Reich
Publisher: Cambridge University Press
Total Pages: 308
Release: 2015-05-14
Genre: Computers
ISBN: 1107069394

This book covers key ideas and concepts. It is an ideal introduction for graduate students in any field where Bayesian data assimilation is applied.