Data Management and Analysis Using JMP

Data Management and Analysis Using JMP
Author: Jane E Oppenlander
Publisher: SAS Institute
Total Pages: 250
Release: 2017-10-17
Genre: Computers
ISBN: 1629605409

A holistic, step-by-step approach to analyzing health care data! Written for both beginner and intermediate JMP users working in or studying health care, Data Management and Analysis Using JMP: Health Care Case Studies bridges the gap between taking traditional statistics courses and successfully applying statistical analysis in the workplace. Authors Jane Oppenlander and Patricia Schaffer begin by illustrating techniques to prepare data for analysis, followed by presenting effective methods to summarize, visualize, and analyze data. The statistical analysis methods covered in the book are the foundational techniques commonly applied to meet regulatory, operational, budgeting, and research needs in the health care field. This example-driven book shows practitioners how to solve real-world problems by using an approach that includes problem definition, data management, selecting the appropriate analysis methods, step-by-step JMP instructions, and interpreting statistical results in context. Practical strategies for selecting appropriate statistical methods, remediating data anomalies, and interpreting statistical results in the domain context are emphasized. The cases presented in Data Management and Analysis Using JMP use multiple statistical methods. A progression of methods--from univariate to multivariate--is employed, illustrating a logical approach to problem-solving. Much of the data used in these cases is open source and drawn from a variety of health care settings. The book offers a welcome guide to working professionals as well as students studying statistics in health care-related fields.

Preparing Data for Analysis with JMP

Preparing Data for Analysis with JMP
Author: Robert Carver
Publisher: SAS Institute
Total Pages: 216
Release: 2017-05-01
Genre: Computers
ISBN: 1635261481

Access and clean up data easily using JMP®! Data acquisition and preparation commonly consume approximately 75% of the effort and time of total data analysis. JMP provides many visual, intuitive, and even innovative data-preparation capabilities that enable you to make the most of your organization's data. Preparing Data for Analysis with JMP® is organized within a framework of statistical investigations and model-building and illustrates the new data-handling features in JMP, such as the Query Builder. Useful to students and programmers with little or no JMP experience, or those looking to learn the new data-management features and techniques, it uses a practical approach to getting started with plenty of examples. Using step-by-step demonstrations and screenshots, this book walks you through the most commonly used data-management techniques that also include lots of tips on how to avoid common problems. With this book, you will learn how to: Manage database operations using the JMP Query Builder Get data into JMP from other formats, such as Excel, csv, SAS, HTML, JSON, and the web Identify and avoid problems with the help of JMP’s visual and automated data-exploration tools Consolidate data from multiple sources with Query Builder for tables Deal with common issues and repairs that include the following tasks: reshaping tables (stack/unstack) managing missing data with techniques such as imputation and Principal Components Analysis cleaning and correcting dirty data computing new variables transforming variables for modelling reconciling time and date Subset and filter your data Save data tables for exchange with other platforms

JMP Start Statistics

JMP Start Statistics
Author: John Sall
Publisher: SAS Institute
Total Pages: 660
Release: 2017-02-21
Genre: Computers
ISBN: 1629608785

This book provides hands-on tutorials with just the right amount of conceptual and motivational material to illustrate how to use the intuitive interface for data analysis in JMP. Each chapter features concept-specific tutorials, examples, brief reviews of concepts, step-by-step illustrations, and exercises. Updated for JMP 13, JMP Start Statistics, Sixth Edition includes many new features, including: The redesigned Formula Editor. New and improved ways to create formulas in JMP directly from the data table or dialogs. Interface updates, including improved menu layout. Updates and enhancements in many analysis platforms. New ways to get data into JMP and to save and share JMP results. Many new features that make it easier to use JMP.

Practical Data Analysis with JMP, Third Edition

Practical Data Analysis with JMP, Third Edition
Author: Robert Carver
Publisher: SAS Institute
Total Pages: 510
Release: 2019-10-18
Genre: Computers
ISBN: 1642956120

Master the concepts and techniques of statistical analysis using JMP Practical Data Analysis with JMP, Third Edition, highlights the powerful interactive and visual approach of JMP to introduce readers to statistical thinking and data analysis. It helps you choose the best technique for the problem at hand by using real-world cases. It also illustrates best-practice workflow throughout the entire investigative cycle, from asking valuable questions through data acquisition, preparation, analysis, interpretation, and communication of findings. The book can stand on its own as a learning resource for professionals, or it can be used to supplement a college-level textbook for an introductory statistics course. It includes varied examples and problems using real sets of data. Each chapter typically starts with an important or interesting research question that an investigator has pursued. Reflecting the broad applicability of statistical reasoning, the problems come from a wide variety of disciplines, including engineering, life sciences, business, and economics, as well as international and historical examples. Application Scenarios at the end of each chapter challenge you to use your knowledge and skills with data sets that go beyond mere repetition of chapter examples. New in the third edition, chapters have been updated to demonstrate the enhanced capabilities of JMP, including projects, Graph Builder, Query Builder, and Formula Depot.

Practical Data Analysis with JMP

Practical Data Analysis with JMP
Author: Robert Carver
Publisher: SAS Press
Total Pages: 0
Release: 2010
Genre: JMP (Computer file)
ISBN: 9781607644750

"Practical Data Analysis with JMP" uses the powerful interactive and visual approach of JMP to introduce readers to the logic and methods of statistical thinking and data analysis. The book can stand on its own or be used to supplement a standard introduction-to-statistics textbook.

Fundamentals of Predictive Analytics with JMP, Second Edition

Fundamentals of Predictive Analytics with JMP, Second Edition
Author: Ron Klimberg
Publisher: SAS Institute
Total Pages: 406
Release: 2017-12-19
Genre: Computers
ISBN: 1629608033

Going beyond the theoretical foundation, this step-by-step book gives you the technical knowledge and problem-solving skills that you need to perform real-world multivariate data analysis. --

Data Mining for Business Analytics

Data Mining for Business Analytics
Author: Galit Shmueli
Publisher: John Wiley & Sons
Total Pages: 608
Release: 2019-10-14
Genre: Mathematics
ISBN: 111954985X

Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python presents an applied approach to data mining concepts and methods, using Python software for illustration Readers will learn how to implement a variety of popular data mining algorithms in Python (a free and open-source software) to tackle business problems and opportunities. This is the sixth version of this successful text, and the first using Python. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: A new co-author, Peter Gedeck, who brings both experience teaching business analytics courses using Python, and expertise in the application of machine learning methods to the drug-discovery process A new section on ethical issues in data mining Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions Data Mining for Business Analytics: Concepts, Techniques, and Applications in Python is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology. “This book has by far the most comprehensive review of business analytics methods that I have ever seen, covering everything from classical approaches such as linear and logistic regression, through to modern methods like neural networks, bagging and boosting, and even much more business specific procedures such as social network analysis and text mining. If not the bible, it is at the least a definitive manual on the subject.” —Gareth M. James, University of Southern California and co-author (with Witten, Hastie and Tibshirani) of the best-selling book An Introduction to Statistical Learning, with Applications in R

JMP for Basic Univariate and Multivariate Statistics

JMP for Basic Univariate and Multivariate Statistics
Author: Ann Lehman
Publisher: SAS Institute
Total Pages: 559
Release: 2013
Genre: Computers
ISBN: 1612906036

Learn how to manage JMP data and perform the statistical analyses most commonly used in research in the social sciences and other fields with JMP for Basic Univariate and Multivariate Statistics: Methods for Researchers and Social Scientists, Second Edition. Updated for JMP 10 and including new features on the statistical platforms, this book offers clearly written instructions to guide you through the basic concepts of research and data analysis, enabling you to easily perform statistical analyses and solve problems in real-world research. Step by step, you'll discover how to obtain descriptive and inferential statistics, summarize results clearly in a way that is suitable for publication, perform a wide range of JMP analyses, interpret the results, and more. Topics include screening data for errors selecting subsets computing the coefficient alpha reliability index (Cronbach's alpha) for a multiple-item scale performing bivariate analyses for all types of variables performing a one-way analysis of variance (ANOVA), multiple regression, and a one-way multivariate analysis of variance (MANOVA) Advanced topics include analyzing models with interactions and repeated measures. There is also comprehensive coverage of principle components with emphasis on graphical interpretation. This user-friendly book introduces researchers and students of the social sciences to JMP and to elementary statistical procedures, while the more advanced statistical procedures that are presented make it an invaluable reference guide for experienced researchers as well.

Building Better Models with JMP Pro

Building Better Models with JMP Pro
Author: Jim Grayson
Publisher: SAS Institute
Total Pages: 358
Release: 2015-08-01
Genre: Computers
ISBN: 1629599565

Building Better Models with JMP® Pro provides an example-based introduction to business analytics, with a proven process that guides you in the application of modeling tools and concepts. It gives you the "what, why, and how" of using JMP® Pro for building and applying analytic models. This book is designed for business analysts, managers, and practitioners who may not have a solid statistical background, but need to be able to readily apply analytic methods to solve business problems. In addition, this book will greatly benefit faculty members who teach any of the following subjects at the lower to upper graduate level: predictive modeling, data mining, and business analytics. Novice to advanced users in business statistics, business analytics, and predictive modeling will find that it provides a peek inside the black box of algorithms and the methods used. Topics include: regression, logistic regression, classification and regression trees, neural networks, model cross-validation, model comparison and selection, and data reduction techniques. Full of rich examples, Building Better Models with JMP Pro is an applied book on business analytics and modeling that introduces a simple methodology for managing and executing analytics projects. No prior experience with JMP is needed. Make more informed decisions from your data using this newest JMP book.