Data Mining For Dummies

Data Mining For Dummies
Author: Meta S. Brown
Publisher: John Wiley & Sons
Total Pages: 422
Release: 2014-09-04
Genre: Computers
ISBN: 1118893166

Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.

Data Mining For Dummies

Data Mining For Dummies
Author: Meta S. Brown
Publisher: John Wiley & Sons
Total Pages: 422
Release: 2014-09-29
Genre: Computers
ISBN: 1118893174

Delve into your data for the key to success Data mining is quickly becoming integral to creating value and business momentum. The ability to detect unseen patterns hidden in the numbers exhaustively generated by day-to-day operations allows savvy decision-makers to exploit every tool at their disposal in the pursuit of better business. By creating models and testing whether patterns hold up, it is possible to discover new intelligence that could change your business's entire paradigm for a more successful outcome. Data Mining for Dummies shows you why it doesn't take a data scientist to gain this advantage, and empowers average business people to start shaping a process relevant to their business's needs. In this book, you'll learn the hows and whys of mining to the depths of your data, and how to make the case for heavier investment into data mining capabilities. The book explains the details of the knowledge discovery process including: Model creation, validity testing, and interpretation Effective communication of findings Available tools, both paid and open-source Data selection, transformation, and evaluation Data Mining for Dummies takes you step-by-step through a real-world data-mining project using open-source tools that allow you to get immediate hands-on experience working with large amounts of data. You'll gain the confidence you need to start making data mining practices a routine part of your successful business. If you're serious about doing everything you can to push your company to the top, Data Mining for Dummies is your ticket to effective data mining.

Cryptocurrency Mining For Dummies

Cryptocurrency Mining For Dummies
Author: Peter Kent
Publisher: John Wiley & Sons
Total Pages: 56
Release: 2019-12-05
Genre: Computers
ISBN: 1119579295

Find out the essentials of cryptocurrency mining The cryptocurrency phenomenon has sparked a new opportunity mine for virtual gold, kind of like the prospectors of a couple centuries back. This time around, you need some tech know-how to get into the cryptocurrency mining game. This book shares the insight of two cryptocurrency insiders as they break down the necessary hardware, software, and strategies to mine Bitcoin, Ethereum, Monero, LiteCoin, and Dash. They also provide insight on how to stay ahead of the curve to maximize your return on investment. Get the tech tools and know-how to start mining Pick the best cryptocurrency to return your investment Apply a sound strategy to stay ahead of the game Find cryptocurrency value at the source From the basics of cryptocurrency and blockchain to selecting the best currency to mine, this easy-to-access book makes it easy to get started today!

Data Mining: Concepts and Techniques

Data Mining: Concepts and Techniques
Author: Jiawei Han
Publisher: Elsevier
Total Pages: 740
Release: 2011-06-09
Genre: Computers
ISBN: 0123814804

Data Mining: Concepts and Techniques provides the concepts and techniques in processing gathered data or information, which will be used in various applications. Specifically, it explains data mining and the tools used in discovering knowledge from the collected data. This book is referred as the knowledge discovery from data (KDD). It focuses on the feasibility, usefulness, effectiveness, and scalability of techniques of large data sets. After describing data mining, this edition explains the methods of knowing, preprocessing, processing, and warehousing data. It then presents information about data warehouses, online analytical processing (OLAP), and data cube technology. Then, the methods involved in mining frequent patterns, associations, and correlations for large data sets are described. The book details the methods for data classification and introduces the concepts and methods for data clustering. The remaining chapters discuss the outlier detection and the trends, applications, and research frontiers in data mining. This book is intended for Computer Science students, application developers, business professionals, and researchers who seek information on data mining. - Presents dozens of algorithms and implementation examples, all in pseudo-code and suitable for use in real-world, large-scale data mining projects - Addresses advanced topics such as mining object-relational databases, spatial databases, multimedia databases, time-series databases, text databases, the World Wide Web, and applications in several fields - Provides a comprehensive, practical look at the concepts and techniques you need to get the most out of your data

Data Mining

Data Mining
Author: Ian H. Witten
Publisher: Elsevier
Total Pages: 665
Release: 2011-02-03
Genre: Computers
ISBN: 0080890369

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. The book is targeted at information systems practitioners, programmers, consultants, developers, information technology managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse engineers, data mining professionals. The book will also be useful for professors and students of upper-level undergraduate and graduate-level data mining and machine learning courses who want to incorporate data mining as part of their data management knowledge base and expertise. - Provides a thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques to your data mining projects - Offers concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods - Includes downloadable Weka software toolkit, a collection of machine learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data pre-processing, classification, regression, clustering, association rules, visualization

Data Mining

Data Mining
Author: Richard J. Roiger
Publisher: CRC Press
Total Pages: 530
Release: 2017-01-06
Genre: Business & Economics
ISBN: 1498763987

Provides in-depth coverage of basic and advanced topics in data mining and knowledge discovery Presents the most popular data mining algorithms in an easy to follow format Includes instructional tutorials on applying the various data mining algorithms Provides several interesting datasets ready to be mined Offers in-depth coverage of RapidMiner Studio and Weka’s Explorer interface Teaches the reader (student,) hands-on, about data mining using RapidMiner Studio and Weka Gives instructors a wealth of helpful resources, including all RapidMiner processes used for the tutorials and for solving the end of chapter exercises. Instructors will be able to get off the starting block with minimal effort Extra resources include screenshot sequences for all RapidMiner and Weka tutorials and demonstrations, available for students and instructors alike The latest version of all freely available materials can also be downloaded at: http://krypton.mnsu.edu/~sa7379bt/

Data Science For Dummies

Data Science For Dummies
Author: Lillian Pierson
Publisher: John Wiley & Sons
Total Pages: 436
Release: 2021-08-20
Genre: Computers
ISBN: 1119811619

Monetize your company’s data and data science expertise without spending a fortune on hiring independent strategy consultants to help What if there was one simple, clear process for ensuring that all your company’s data science projects achieve a high a return on investment? What if you could validate your ideas for future data science projects, and select the one idea that’s most prime for achieving profitability while also moving your company closer to its business vision? There is. Industry-acclaimed data science consultant, Lillian Pierson, shares her proprietary STAR Framework – A simple, proven process for leading profit-forming data science projects. Not sure what data science is yet? Don’t worry! Parts 1 and 2 of Data Science For Dummies will get all the bases covered for you. And if you’re already a data science expert? Then you really won’t want to miss the data science strategy and data monetization gems that are shared in Part 3 onward throughout this book. Data Science For Dummies demonstrates: The only process you’ll ever need to lead profitable data science projects Secret, reverse-engineered data monetization tactics that no one’s talking about The shocking truth about how simple natural language processing can be How to beat the crowd of data professionals by cultivating your own unique blend of data science expertise Whether you’re new to the data science field or already a decade in, you’re sure to learn something new and incredibly valuable from Data Science For Dummies. Discover how to generate massive business wins from your company’s data by picking up your copy today.

Predictive Data Mining

Predictive Data Mining
Author: Sholom M. Weiss
Publisher: Morgan Kaufmann
Total Pages: 244
Release: 1998
Genre: Computers
ISBN: 9781558604032

This book is the first technical guide to provide a complete, generalized road map for developing data-mining applications, together with advice on performing these large-scale, open-ended analyses for real-world data warehouses.

Design and Implementation of Data Mining Tools

Design and Implementation of Data Mining Tools
Author: Bhavani Thuraisingham
Publisher: CRC Press
Total Pages: 272
Release: 2009-06-18
Genre: Computers
ISBN: 1420045911

Focusing on three applications of data mining, Design and Implementation of Data Mining Tools explains how to create and employ systems and tools for intrusion detection, Web page surfing prediction, and image classification. Mainly based on the authors' own research work, the book takes a practical approach to the subject.The first part of the boo