Data Science on the Google Cloud Platform

Data Science on the Google Cloud Platform
Author: Valliappa Lakshmanan
Publisher: "O'Reilly Media, Inc."
Total Pages: 403
Release: 2017-12-12
Genre: Computers
ISBN: 1491974532

Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines

Data Science on the Google Cloud Platform

Data Science on the Google Cloud Platform
Author: Valliappa Lakshmanan
Publisher: "O'Reilly Media, Inc."
Total Pages: 403
Release: 2017-12-12
Genre: Computers
ISBN: 1491974532

Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines

Data Science on the Google Cloud Platform

Data Science on the Google Cloud Platform
Author: Valliappa Lakshmanan
Publisher: "O'Reilly Media, Inc."
Total Pages: 462
Release: 2022-03-29
Genre: Computers
ISBN: 1098118928

Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build using Google Cloud Platform (GCP). This hands-on guide shows data engineers and data scientists how to implement an end-to-end data pipeline with cloud native tools on GCP. Throughout this updated second edition, you'll work through a sample business decision by employing a variety of data science approaches. Follow along by building a data pipeline in your own project on GCP, and discover how to solve data science problems in a transformative and more collaborative way. You'll learn how to: Employ best practices in building highly scalable data and ML pipelines on Google Cloud Automate and schedule data ingest using Cloud Run Create and populate a dashboard in Data Studio Build a real-time analytics pipeline using Pub/Sub, Dataflow, and BigQuery Conduct interactive data exploration with BigQuery Create a Bayesian model with Spark on Cloud Dataproc Forecast time series and do anomaly detection with BigQuery ML Aggregate within time windows with Dataflow Train explainable machine learning models with Vertex AI Operationalize ML with Vertex AI Pipelines

Data Analytics with Google Cloud Platform

Data Analytics with Google Cloud Platform
Author: Murari Ramuka
Publisher: BPB Publications
Total Pages: 287
Release: 2019-12-16
Genre: Computers
ISBN: 9389423635

Step-by-step guide to different data movement and processing techniques, using Google Cloud Platform Services DESCRIPTION Modern businesses are awash with data, making data-driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with enough knowledge of Cloud Computing in conjunction with Google Cloud Data platform to succeed in the role of a Cloud data expert. The current market is trending towards the latest cloud technologies, which is the need of the hour. Google being the pioneer, is dominating this space with the right set of cloud services being offered as part of GCP (Google Cloud Platform). At this juncture, this book will be very vital and will cover all the services that are being offered by GCP, putting emphasis on Data services. This book starts with sophisticated knowledge on Cloud Computing. It also explains different types of data services/technology and machine learning algorithm/Pre-Trained API through real-business problems, which are built on the Google Cloud Platform (GCP). With some of the latest business examples and hands-on guide, this book will enable the developers entering the data analytics fields to implement an end-to-end data pipeline, using GCP Data services. Through the course of the book, you will come across multiple industry-wise use cases, like Building Datawarehouse using Big Query, a sample real-time data analytics solution on machine learning and Artificial Intelligence that helped with the business decision, by employing a variety of data science approaches on Google Cloud environment. Whether yourÊbusinessÊis at the early stage of cloud implementation in its journey or well on its way to digital transformation,ÊGoogle Cloud'sÊsolutions and technologies will always help chart a path to success. This book can be used to develop the GCP concepts in an easy way. It contains many examples showcasing the implementation of a GCP service. It enables the learning of the basic and advance concepts of Google Cloud Data Platform. This book is divided into 7 chapters and provides a detailed description of the core concepts of each of the Data services offered by Google Cloud. KEY FEATURES Learn the basic concept of Cloud Computing along with different Cloud service provides with their supported Models (IaaS/PaaS/SaaS) Learn the basics of Compute Engine, App Engine, Container Engine, Project and Billing setup in the Google Cloud Platform Learn how and when to use Cloud DataFlow, Cloud DataProc and Cloud DataPrepÊ Build real-time data pipeline to support real-time analytics using Pub/Sub messaging service Setting up a fully managed GCP Big Data Cluster using Cloud DataProc for runningÊApache SparkÊandÊApache HadoopÊclusters in a simpler, more cost-efficient manner Learn how to use Cloud Data Studio for visualizing the data on top of Big Query Implement and understand real-world business scenarios for Machine Learning, Data Pipeline Engineering WHAT WILL YOU LEARN By the end of the book, you will have come across different data services and platforms offered by Google Cloud, and how those services/features can be enabled to serve business needs. You will also see a few case studies to put your knowledge to practice and solve business problems such as building a real-time streaming pipeline engine, Scalable Data Warehouse on Cloud, fully managed Hadoop cluster on Cloud and enabling TensorFlow/Machine Learning APIÕs to support real-life business problems. Remember to practice additional examples to master these techniques. WHO IS THIS BOOK FOR This book is for professionals as well as graduates who want to build a career in Google Cloud data analytics technologies. While no prior knowledge of Cloud Computing or related technologies is assumed, it will be helpful to have some data background and experience. One stop shop for those who wish to get an initial to advance understanding of the GCP data platform. The target audience will be data engineers/professionals who are new, as well as those who are acquainted with the tools and techniques related to cloud and data space.ÊÊ _Ê Ê Ê Individuals who have basic data understanding (i.e. Data and cloud) and have done some work in the field ofÊ data analytics, can refer/use this book to master their knowledge/understanding. _Ê Ê Ê The highlight of this book is that it will start with theÊ basic cloud computing fundamentals and will move on to cover the advance concepts on GCP cloud data analytics and hence can be referred across multiple different levels of audiences.Ê Table of Contents 1. GCP Overview and Architecture 2. Data Storage in GCPÊ 3. Data Processing in GCP with Pub/Sub and DataflowÊ 4. Data Processing in GCP with DataPrep and Dataflow 5. Big Query and Data Studio 6. Machine Learning with GCP 7. Sample Use cases and Examples

Data Analytics with Google Cloud Platform

Data Analytics with Google Cloud Platform
Author: Murari Ramuka
Publisher: BPB Publications
Total Pages: 287
Release: 2019-12-16
Genre: Computers
ISBN: 9389423635

Step-by-step guide to different data movement and processing techniques, using Google Cloud Platform Services DESCRIPTION Modern businesses are awash with data, making data-driven decision-making tasks increasingly complex. As a result, relevant technical expertise and analytical skills are required to do such tasks. This book aims to equip you with enough knowledge of Cloud Computing in conjunction with Google Cloud Data platform to succeed in the role of a Cloud data expert. The current market is trending towards the latest cloud technologies, which is the need of the hour. Google being the pioneer, is dominating this space with the right set of cloud services being offered as part of GCP (Google Cloud Platform). At this juncture, this book will be very vital and will cover all the services that are being offered by GCP, putting emphasis on Data services. This book starts with sophisticated knowledge on Cloud Computing. It also explains different types of data services/technology and machine learning algorithm/Pre-Trained API through real-business problems, which are built on the Google Cloud Platform (GCP). With some of the latest business examples and hands-on guide, this book will enable the developers entering the data analytics fields to implement an end-to-end data pipeline, using GCP Data services. Through the course of the book, you will come across multiple industry-wise use cases, like Building Datawarehouse using Big Query, a sample real-time data analytics solution on machine learning and Artificial Intelligence that helped with the business decision, by employing a variety of data science approaches on Google Cloud environment. Whether yourÊbusinessÊis at the early stage of cloud implementation in its journey or well on its way to digital transformation,ÊGoogle Cloud'sÊsolutions and technologies will always help chart a path to success. This book can be used to develop the GCP concepts in an easy way. It contains many examples showcasing the implementation of a GCP service. It enables the learning of the basic and advance concepts of Google Cloud Data Platform. This book is divided into 7 chapters and provides a detailed description of the core concepts of each of the Data services offered by Google Cloud. KEY FEATURES Learn the basic concept of Cloud Computing along with different Cloud service provides with their supported Models (IaaS/PaaS/SaaS) Learn the basics of Compute Engine, App Engine, Container Engine, Project and Billing setup in the Google Cloud Platform Learn how and when to use Cloud DataFlow, Cloud DataProc and Cloud DataPrepÊ Build real-time data pipeline to support real-time analytics using Pub/Sub messaging service Setting up a fully managed GCP Big Data Cluster using Cloud DataProc for runningÊApache SparkÊandÊApache HadoopÊclusters in a simpler, more cost-efficient manner Learn how to use Cloud Data Studio for visualizing the data on top of Big Query Implement and understand real-world business scenarios for Machine Learning, Data Pipeline Engineering WHAT WILL YOU LEARN By the end of the book, you will have come across different data services and platforms offered by Google Cloud, and how those services/features can be enabled to serve business needs. You will also see a few case studies to put your knowledge to practice and solve business problems such as building a real-time streaming pipeline engine, Scalable Data Warehouse on Cloud, fully managed Hadoop cluster on Cloud and enabling TensorFlow/Machine Learning APIÕs to support real-life business problems. Remember to practice additional examples to master these techniques. WHO IS THIS BOOK FOR This book is for professionals as well as graduates who want to build a career in Google Cloud data analytics technologies. While no prior knowledge of Cloud Computing or related technologies is assumed, it will be helpful to have some data background and experience. One stop shop for those who wish to get an initial to advance understanding of the GCP data platform. The target audience will be data engineers/professionals who are new, as well as those who are acquainted with the tools and techniques related to cloud and data space.ÊÊ _Ê Ê Ê Individuals who have basic data understanding (i.e. Data and cloud) and have done some work in the field ofÊ data analytics, can refer/use this book to master their knowledge/understanding. _Ê Ê Ê The highlight of this book is that it will start with theÊ basic cloud computing fundamentals and will move on to cover the advance concepts on GCP cloud data analytics and hence can be referred across multiple different levels of audiences.Ê Table of Contents 1. GCP Overview and Architecture 2. Data Storage in GCPÊ 3. Data Processing in GCP with Pub/Sub and DataflowÊ 4. Data Processing in GCP with DataPrep and Dataflow 5. Big Query and Data Studio 6. Machine Learning with GCP 7. Sample Use cases and Examples

Data Science: Neural Networks, Deep Learning, LLMs and Power BI

Data Science: Neural Networks, Deep Learning, LLMs and Power BI
Author: Jagdish Krishanlal Arora
Publisher: Jagdish Krishanlal Arora
Total Pages: 173
Release: 2024-08-29
Genre: Computers
ISBN:

I wrote this book as I got an interview offer for Data Analyst. There they asked me a lot of questions and there was an exam. This helped me a lot to write the book based on the interview questions faced by me and the knowledge gained by working on AI projects. I then added all my other knowledge working as a Data Analyst on my other projects and wrote the book. Technical books need a lot of attention, as they need deep checks, but I tried to do my best. Not everything can be included in detail, it is impossible. I have tried to include everything related to Data Science that is presently going on in the industry and the world.

Hands-On Machine Learning on Google Cloud Platform

Hands-On Machine Learning on Google Cloud Platform
Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
Total Pages: 489
Release: 2018-04-30
Genre: Computers
ISBN: 1788398874

Unleash Google's Cloud Platform to build, train and optimize machine learning models Key Features Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical approach to produce your trained ML models and port them to your mobile for easy access Book Description Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems. What you will learn Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile Create, train and optimize deep learning models for various data science problems on big data Learn how to leverage BigQuery to explore big datasets Use Google’s pre-trained TensorFlow models for NLP, image, video and much more Create models and architectures for Time series, Reinforcement Learning, and generative models Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications Who this book is for This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy

Google Cloud Platform All-In-One Guide

Google Cloud Platform All-In-One Guide
Author: Praveen Kukreti
Publisher: BPB Publications
Total Pages: 298
Release: 2023-01-16
Genre: Computers
ISBN: 9355513321

Explore the Essential Concepts, Tools, and Services in GCP KEY FEATURES ● Build a solid foundation of the Google Cloud Platform. ● Work with different AI and Machine Learning services offered by Google Cloud. ● Learn how to use Google cloud services to build scalable apps. DESCRIPTION Google Cloud platform has a suite of cloud computing services for developing and maintaining software. It includes products like Google Compute Engine, Google App Engine, Google Cloud Storage, and Google Container Engine. With so much to offer, we will learn how to manage services running on Google Cloud. ‘Google Cloud Platform All-In-One Guide’ is primarily for everyone who wants to get familiar with the comprehensive list of services in GCP. You will work with various cloud-based services in computing, storage, database, and networking domains. You will understand how Big Data services can be used for developing end-to-end ETL/ELT pipelines. Lastly, you will explore various APIs available in Google cloud. The book ends with a chapter on best practices that will help you maximize resource utilization and cost optimization. By the end of the book, you will be able to design, develop, and deploy apps in GCP. WHAT YOU WILL LEARN ● Explore and work with security and monitoring services in Google Cloud. ● Learn how to build an ETL Pipeline in the Google Cloud Platform. ● Build and deploy code-based custom models using Vertex AI and Jupyter notebook. ● Learn how to create workflows using GCP services. ● Get an overview of best practices for securely deploying your workloads on Google Cloud. WHO THIS BOOK IS FOR This book is for everyone new to cloud computing or Google cloud. Cloud professionals who are looking to migrate their services to the Google cloud platform will find this book helpful. TABLE OF CONTENTS 1. Cloud Computing Fundamentals 2. Compute in Google Cloud 3. Storage in Google Cloud 4. Database Services in Google Cloud 5. Networking in Google Cloud 6. Security and Monitoring Services in Google Cloud 7. Big Data in Google Cloud 8. AI/ML in Google Cloud 9. Orchestration Services in GCP 10. Migration Services in GCP 11. Best Practices 12. Bonus Chapter 13. Use Cases

Practical AI on the Google Cloud Platform

Practical AI on the Google Cloud Platform
Author: Micheal Lanham
Publisher: "O'Reilly Media, Inc."
Total Pages: 394
Release: 2020-10-20
Genre: Computers
ISBN: 1492075760

Working with AI is complicated and expensive for many developers. That's why cloud providers have stepped in to make it easier, offering free (or affordable) state-of-the-art models and training tools to get you started. With this book, you'll learn how to use Google's AI-powered cloud services to do everything from creating a chatbot to analyzing text, images, and video. Author Micheal Lanham demonstrates methods for building and training models step-by-step and shows you how to expand your models to accomplish increasingly complex tasks. If you have a good grasp of math and the Python language, you'll quickly get up to speed with Google Cloud Platform, whether you want to build an AI assistant or a simple business AI application. Learn key concepts for data science, machine learning, and deep learning Explore tools like Video AI and AutoML Tables Build a simple language processor using deep learning systems Perform image recognition using CNNs, transfer learning, and GANs Use Google's Dialogflow to create chatbots and conversational AI Analyze video with automatic video indexing, face detection, and TensorFlow Hub Build a complete working AI agent application