Deep Carbon

Deep Carbon
Author: Beth N. Orcutt
Publisher: Cambridge University Press
Total Pages: 687
Release: 2020
Genre: Nature
ISBN: 1108477496

A comprehensive guide to carbon inside Earth - its quantities, movements, forms, origins, changes over time and impact on planetary processes. This title is also available as Open Access on Cambridge Core.

From Crust to Core

From Crust to Core
Author: Simon Mitton
Publisher: Cambridge University Press
Total Pages: 383
Release: 2020-12-17
Genre: Nature
ISBN: 1108426697

A fascinating historical account of the emergence and development of the new interdisciplinary field of deep carbon science.

Deep Carbon Science

Deep Carbon Science
Author: Isabelle Daniel
Publisher: Frontiers Media SA
Total Pages: 233
Release: 2021-01-04
Genre: Science
ISBN: 2889663280

Deep Carbon in Earth: Early Career Scientist Contributions to the Deep Carbon Observatory

Deep Carbon in Earth: Early Career Scientist Contributions to the Deep Carbon Observatory
Author: Donato Giovannelli
Publisher: Frontiers Media SA
Total Pages: 223
Release: 2017-11-27
Genre:
ISBN: 2889453634

Since its inception, the Deep Carbon Observatory (DCO) has coalesced a multidisciplinary and international group of researchers focused on understanding and quantifying Earth’s deep carbon budget. Carbon is the fourth most abundant element in the universe, and understanding carbon chemistry under a variety of environmental conditions impacts all aspects of planetary sciences, including planet formation, the form and function of planetary interiors, and the origin and diversity of life. DCO recognizes that is integrating and promoting the contributions of early career scientists are integral to the advancement of knowledge regarding the quantities, movements, origins, and forms of Earth’s deep carbon through field, experimental, analytical, and computational research. Early career scientists represent the future of deep carbon science and contribute substantially to ongoing research by implementing innovative ideas, challenging traditional working schemes, and bringing a globally interconnected perspective to the scientific community. This research topic highlights the contributions at the forefront of deep carbon research by DCO Early Career Scientist community. The manuscripts of this Frontiers e-volume bear evidence of the rapid advances in deep carbon science, and highlights the importance of approaching this field from a plethora of different angles integrating disciplines as diverse as mineralogy, geochemistry and microbiology. This integration is fundamental in understanding the movements and transformations of carbon across its deep cycle.

Carbon in Earth's Interior

Carbon in Earth's Interior
Author: Craig E. Manning
Publisher: John Wiley & Sons
Total Pages: 373
Release: 2020-04-03
Genre: Science
ISBN: 1119508231

Carbon in Earth's fluid envelopes - the atmosphere, biosphere, and hydrosphere, plays a fundamental role in our planet's climate system and a central role in biology, the environment, and the economy of earth system. The source and original quantity of carbon in our planet is uncertain, as are the identities and relative importance of early chemical processes associated with planetary differentiation. Numerous lines of evidence point to the early and continuing exchange of substantial carbon between Earth's surface and its interior, including diamonds, carbon-rich mantle-derived magmas, carbonate rocks in subduction zones and springs carrying deeply sourced carbon-bearing gases. Thus, there is little doubt that a substantial amount of carbon resides in our planet's interior. Yet, while we know it must be present, carbon's forms, transformations and movements at conditions relevant to the interiors of Earth and other planets remain uncertain and untapped. Volume highlights include: - Reviews key, general topics, such as carbonate minerals, the deep carbon cycle, and carbon in magmas or fluids - Describes new results at the frontiers of the field with presenting results on carbon in minerals, melts, and fluids at extreme conditions of planetary interiors - Brings together emerging insights into carbon's forms, transformations and movements through study of the dynamics, structure, stability and reactivity of carbon-based natural materials - Reviews emerging new insights into the properties of allied substances that carry carbon, into the rates of chemical and physical transformations, and into the complex interactions between moving fluids, magmas, and rocks to the interiors of Earth and other planets - Spans the various chemical redox states of carbon, from reduced hydrocarbons to zero-valent diamond and graphite to oxidized CO2 and carbonates - Captures and synthesizes the exciting results of recent, focused efforts in an emerging scientific discipline - Reports advances over the last decade that have led to a major leap forward in our understanding of carbon science - Compiles the range of methods that can be tapped tap from the deep carbon community, which includes experimentalists, first principles theorists, thermodynamic modelers and geodynamicists - Represents a reference point for future deep carbon science research Carbon in Planetary Interiors will be a valuable resource for researchers and students who study the Earth's interior. The topics of this volume are interdisciplinary, and therefore will be useful to professionals from a wide variety of fields in the Earth Sciences, such as mineral physics, petrology, geochemistry, experimentalists, first principles theorists, thermodynamics, material science, chemistry, geophysics and geodynamics.

Science of Carbon Storage in Deep Saline Formations

Science of Carbon Storage in Deep Saline Formations
Author: Pania Newell
Publisher: Elsevier
Total Pages: 0
Release: 2018-09-10
Genre: Science
ISBN: 9780128127520

Science of Carbon Storage in Deep Saline Formations: Process Coupling across Time and Spatial Scales summarizes state-of-the-art research, emphasizing how the coupling of physical and chemical processes as subsurface systems re-equilibrate during and after the injection of CO2. In addition, it addresses, in an easy-to-follow way, the lack of knowledge in understanding the coupled processes related to fluid flow, geomechanics and geochemistry over time and spatial scales. The book uniquely highlights process coupling and process interplay across time and spatial scales that are relevant to geological carbon storage.

Legal Pathways to Deep Decarbonization in the United States

Legal Pathways to Deep Decarbonization in the United States
Author: Michael Gerrard
Publisher:
Total Pages: 1056
Release: 2019-03-18
Genre: Carbon dioxide mitigation
ISBN: 9781585761975

Legal Pathways to Deep Decarbonization in the United States provides a "legal playbook" for deep decarbonization in the United States, identifying well over 1,000 legal options for enabling the United States to address one of the greatest problems facing this country and the rest of humanity. The book is based on two reports by the Deep Decarbonization Pathways Project (DDPP) that explain technical and policy pathways for reducing U.S. greenhouse gas emissions by at least 80% from 1990 levels by 2050. This 80x50 target and similarly aggressive carbon abatement goals are often referred to as deep decarbonization, distinguished because it requires systemic changes to the energy economy. Legal Pathways explains the DDPP reports and then addresses in detail 35 different topics in as many chapters. These 35 chapters cover energy efficiency, conservation, and fuel switching; electricity decarbonization; fuel decarbonization; carbon capture and negative emissions; non-carbon dioxide climate pollutants; and a variety of cross-cutting issues. The legal options involve federal, state, and local law, as well as private governance. Authors were asked to include all options, even if they do not now seem politically realistic or likely, giving Legal Pathways not just immediate value, but also value over time. While both the scale and complexity of deep decarbonization are enormous, this book has a simple message: deep decarbonization is achievable in the United States using laws that exist or could be enacted. These legal tools can be used with significant economic, social, environmental, and national security benefits. Book Reviews "A growing chorus of Americans understand that climate change is the biggest public health, economic, and national security challenge our families have ever faced and they rightly ask, ''What can anyone do?'' Well, this book makes that answer very clear: we can do a lot as individuals, businesses, communities, cities, states, and the federal government to fight climate change. The legal pathways are many and the barriers are not insurmountable. In short, the time is now to dig deep and decarbonize." --Gina McCarthy, Former U.S. Environmental Protection Agency Administrator "Legal Pathways to Deep Decarbonization in the United States sets forth over 1,000 solutions for federal, state, local, and private actors to tackle climate change. This book also makes the math for Congress clear: with hundreds of policy options and 12 years to stop the worst impacts of climate change, now is the time to find a path forward." --Sheldon Whitehouse, U.S. Senator, Rhode Island "This superb work comes at a critical time in the history of our planet. As we increasingly face the threat and reality of climate change and its inevitable impact on our most vulnerable populations, this book provides the best and most current thinking on viable options for the future to address and ameliorate a vexing, worldwide challenge of extraordinary magnitude. Michael Gerrard and John Dernbach are two of the most distinguished academicians in the country on these issues, and they have assembled leading scholars and practitioners to provide a possible path forward. With 35 chapters and over 1,000 legal options, the book is like a menu of offerings for public consumption, showing that real actions can be taken, now and in the future, to achieve deep decarbonization. I recommend the book highly." --John C. Cruden, Past Assistant Attorney General, Environment and Natural Resources Division, U.S. Department of Justice "This book proves that we already know what to do about climate change, if only we had the will to do it. The path to decarbonization depends as much on removing legal impediments and changing outdated incentive systems as it does on imposing new regulations. There are ideas here for every sector of the economy, for every level of government, and for business and nongovernmental organizations, too, all of which should be on the table for any serious country facing the most serious of challenges. By giving us a sense of the possible, Gerrard and Dernbach and their fine authors seem to be saying two things: (1) do something; and (2) it''s possible. What a timely message, and what a great collection." --Jody Freeman, Archibald Cox Professor of Law and Founding Director of the Harvard Law School Environmental and Energy Law Program

Wetland Carbon and Environmental Management

Wetland Carbon and Environmental Management
Author: Ken W. Krauss
Publisher: John Wiley & Sons
Total Pages: 484
Release: 2021-11-23
Genre: Science
ISBN: 111963928X

Explores how the management of wetlands can influence carbon storage and fluxes. Wetlands are vital natural assets, including their ability to take-up atmospheric carbon and restrict subsequent carbon loss to facilitate long-term storage. They can be deliberately managed to provide a natural solution to mitigate climate change, as well as to help offset direct losses of wetlands from various land-use changes and natural drivers. Wetland Carbon and Environmental Management presents a collection of wetland research studies from around the world to demonstrate how environmental management can improve carbon sequestration while enhancing wetland health and function. Volume highlights include: Overview of carbon storage in the landscape Introduction to wetland management practices Comparisons of natural, managed, and converted wetlands Impact of wetland management on carbon storage or loss Techniques for scientific assessment of wetland carbon processes Case studies covering tropical, coastal, inland, and northern wetlands Primer for carbon offset trading programs and how wetlands might contribute The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity.Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.