Design and Processing of Particulate Products

Design and Processing of Particulate Products
Author: Jim Litster
Publisher: Cambridge University Press
Total Pages: 343
Release: 2016-10-20
Genre: Science
ISBN: 1107007372

A unique text providing comprehensive coverage of fundamental particle science, processing and technology. Including quantitative tools, real-world case studies and end-of-chapter problems, it is ideal for students in engineering and applied sciences, as well as for practitioners in a range of industries manufacturing particulate products.

Design and Processing of Particulate Products

Design and Processing of Particulate Products
Author: Jim Litster
Publisher: Cambridge University Press
Total Pages: 343
Release: 2016-10-20
Genre: Technology & Engineering
ISBN: 1316727750

With this unique and comprehensive text, readers will gain the quantitative tools needed to engineer the particulate processes and products that are ubiquitous in modern life. Covering a series of particle and particulate delivery form design processes, with emphasis on design and operation to control particle attributes, and supported by many worked examples, it is essential reading for students and practitioners. Topics covered include a range of particle design processes such as crystallization and precipitation, granulation, grinding, aerosol processes and spray drying, as well as forms of delivery such as granules, tablets, dry powders, and aerosols. Readers will learn from real-world examples how the primary particle properties and the structure and properties of the delivery form can lead to high performance products, ranging from pharmaceuticals, consumer goods and foods, to specialty chemicals, paints, agricultural chemicals and minerals.

Processing of Particulate Solids

Processing of Particulate Solids
Author: J.P. Seville
Publisher: Springer Science & Business Media
Total Pages: 384
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9400914598

Over half of the products of the chemical and process industries are sold in a particulate form. The range of such products is vast: from agrochemicals to pigments, from detergents to foods, from plastics to pharmaceuticals. However, surveys of the performance of processes designed to produce particulate products have consistently shown inadequate design and poor reliability. `Particle technology' is a new subject facing new challenges. Chemical and process engineering is becoming less concerned with the design of plants to produce generic simple chemicals (which are often single phase fluids) and is now more concerned with speciality `effect' chemicals which may often be in particulate form. Chemical and process engineers are also being recruited in increasing numbers into areas outside their tranditional fields, such as the food industry, pharmaceuticals and the manufacture of a wide variety of consumer products. This book has been written to meet their needs. It provides comprehensive coverage of the technology of particulate solids, in a form which is both accessible and concise enough to be useful to engineering and science students in the final year of an undergraduate degree, and at Master's level. Although it was written with students of chemical engineering in mind, it will also be of use and interest to students of other disciplines. It comprises an account of the fundamentals of teh subject, illustrated by worked examples, and followed by a wide range of selected applications.

Unit Operations of Particulate Solids

Unit Operations of Particulate Solids
Author: Enrique Ortega-Rivas
Publisher: CRC Press
Total Pages: 494
Release: 2016-04-19
Genre: Science
ISBN: 1000218872

Suitable for practicing engineers and engineers in training, this book covers the most important operations involving particulate solids. Through clear explanations of theoretical principles and practical laboratory exercises, the text provides an understanding of the behavior of powders and pulverized systems. It also helps readers develop skills for operating, optimizing, and innovating particle processing technologies and machinery in order to carry out industrial operations. The author explores common bulk solids processing operations, including milling, agglomeration, fluidization, mixing, and solid-fluid separation.

Particles and Nanoparticles in Pharmaceutical Products

Particles and Nanoparticles in Pharmaceutical Products
Author: Henk G. Merkus
Publisher: Springer
Total Pages: 455
Release: 2018-09-06
Genre: Technology & Engineering
ISBN: 3319941747

This edited volume brings together the expertise of numerous specialists on the topic of particles – their physical, chemical, pharmacological and toxicological characteristics – when they are a component of pharmaceutical products and formulations. The book discusses in detail properties such as the composition, size, shape, surface properties and porosity of particles with respect to how they impact the formulations and products in which they are used and the effective delivery of pharmaceutical active ingredients. It considers all dosage forms of pharmaceuticals involving particles, from powders to tablets, creams to ointments, and solutions to dry-powder inhalers, also including the latest nanomedicine products. Further, it discusses examples of particle toxicity, as well as the important subject of pharmaceutical industry regulations, guidelines and legislation. The book is of interest to researchers and practitioners who work on testing and developing pharmaceutical dosage and delivery systems.

Product Design and Engineering

Product Design and Engineering
Author: Ulrich Bröckel
Publisher: John Wiley & Sons
Total Pages: 367
Release: 2013-08-02
Genre: Technology & Engineering
ISBN: 3527654763

Covering the whole value chain - from product requirements and properties via process technologies and equipment to real-world applications - this reference represents a comprehensive overview of the topic. The editors and majority of the authors are members of the European Federation of Chemical Engineering, with backgrounds from academia as well as industry. Therefore, this multifaceted area is highlighted from different angles: essential physico-chemical background, latest measurement and prediction techniques, and numerous applications from cosmetic up to food industry. Recommended reading for process, pharma and chemical engineers, chemists in industry, and those working in the pharmaceutical, food, cosmetics, dyes and pigments industries.

Metal Shaping Processes

Metal Shaping Processes
Author: Vukota Boljanovic
Publisher: Industrial Press Inc.
Total Pages: 454
Release: 2009
Genre: Business & Economics
ISBN: 9780831133801

As the only comprehensive text focusing on metal shaping processes, which are still the most widely used processes in the manufacture of products and structures, Metal Shaping Processes carefully presents the fundamentals of metal shaping processes with their relevant applications. The treatment of the subject matter is adequately descriptive for those unfamiliar with the various processes and yet is sufficiently analytical for an introductory academic course in manufacturing. The text, as well as the numerous formulas and illustrations in each chapter, clearly show that shaping processes, as a part of manufacturing engineering, are a complex and interdisciplinary subject. The topics are organized and presented in such a manner that they motivate and challenge students to present technically and economically viable solutions to a wide variety of questions and problems, including product design. It is the perfect textbook for students in mechanical, industrial, and manufacturing engineering programs at both the Associate Degree and Bachelor Degree programs, as well a valuable reference for manufacturing engineers (those who design, execute and maintain the equipment and tools); process engineers (those who plan and engineer the manufacturing steps, equipment, and tooling needed in production); manufacturing managers and supervisors; product design engineers; and maintenance and reliability managers and technicians. Each chapter begins with a brief highlighted outline of the topics to be described. Carefully presents the fundamentals of the particular metal-shaping process with its relevant applications within each chapter, so that the student and teacher can clearly assess the capabilities, limitation, and potentials of the process and its competitive aspects. Features sections on product design considerations, which present guidelines on design for manufacturing in many of the chapters. Offers practical, understandable explanations, even for complex processes. Includes text entries that are coded as in an outline, with these numerical designations carried over the 320 related illustrations for easy cross-referencing. Provides a dual (ISO and USA) unit system. Contains end-of-chapter Review Questions. Includes a chapter on sheet metalworking covering cutting processes; bending process; tubes and pipe bending; deep drawing processes; other sheet metal forming process (stretch forming, spinning, rubber forming, and superplatic forming and diffusion bonding). Provides a useful die classification with 15 illustrations and description; presses for sheet metalworking; and high energy-rate forming processes. A chapter on nontraditional manufacturing process discusses such important processes as mechanical energy processes (ultrasonic machining, water jet cutting); electrochemical machining processes (electrochemical machining, electrochemical grinding); thermal energy processes (electric discharge processes, laser beam machining, electron beam machining); and chemical processes (chemical milling).

The Science and Engineering of Granulation Processes

The Science and Engineering of Granulation Processes
Author: Jim Litster
Publisher: Springer Science & Business Media
Total Pages: 268
Release: 2004-03-31
Genre: Science
ISBN: 9781402018770

This book had its origins in a meeting between two (relatively) young particle technology researchers on Rehobeth Beach in Delaware in 1992 near the holiday house of Reg Davies (then Director of the Particle Science and Technology Research Center in Dupont). As we played in the sand, we shared an excitement for developments in particle technology, especially particle characterization, that would lead operations such as granulation to be placed on a sound scientific and engineering footing. The immediate outcome from this interaction was the development of new industry short courses in granulation and related topics which we taught together both in Australia and North America. This book follows closely the structure and approaches developed in these courses, particularly the emphasis on particle design in granulation, where the impact of both formulation properties and process variables on product attributes needs to be understood and quantified. The book has been a long time in the making. We have been actively preparing the book for at least five years. Although the chapters have relatively good bibliographies, this book is not a review of the field. Rather it is an attempt by the authors to present a comprehensive engineering approach to granulator design, scale up and operation. It is exciting for us to see the explosion of research interest around the world in this area in the last five to seven years. Some of the most recent work will have to find its way into the second edition.

Chemical Product Design

Chemical Product Design
Author: E. L. Cussler
Publisher: Cambridge University Press
Total Pages: 152
Release: 2001-04-16
Genre: Science
ISBN: 9780521791830

Until recently, the chemical industry has been dominated by the manufacture of bulk commodity chemicals such as benzene, ammonia, and polypropylene. However, over the last decade a significant shift occurred. Now most chemical companies devote any new resources to the design and manufacture of specialty, high value-added chemical products such as pharmaceuticals, cosmetics, and electronic coatings. Although the jobs held by chemical engineers have also changed to reflect this altered business, their training has remained static, emphasizing traditional commodities. This ground-breaking text starts to redress the balance between commodities and higher value-added products. It expands the scope of chemical engineering design to encompass both process design and product design. The authors use a four-step procedure for chemical product design - needs, ideas, selection, manufacture - drawing numerous examples from industry to illustrate the discussion. The book concludes with a brief review of the economic issues. Chemical engineering students and beginning chemical engineers will find this text an inviting introduction to chemical product design.