Diffractional Optics of Millimetre Waves

Diffractional Optics of Millimetre Waves
Author: I.V. Minin
Publisher: CRC Press
Total Pages: 424
Release: 2004-09-01
Genre: Science
ISBN: 9781420034486

Diffractional Optics of Millimetre Waves combines those elements of diffraction theory normally associated with optics, including Gaussian beams, lenses, and mirrors, and extends them into the micro- and millimetre wavelength range. In this regime there are a number of applications in devices, such as automobile proximity sensors, satellite-TV receiving antennae, and non-destructive testing systems. Researchers working in these areas would benefit from greater understanding of the diffraction phenomena involved. A translated and updated version of the authors' book Diffraction Quasioptics, this book will present results formerly unavailable in the general literature.

Diffractional Optics of Millimetre Waves

Diffractional Optics of Millimetre Waves
Author: I.V. Minin
Publisher: CRC Press
Total Pages: 396
Release: 2004-09-01
Genre: Science
ISBN: 1420034480

Diffractional Optics of Millimetre Waves combines those elements of diffraction theory normally associated with optics, including Gaussian beams, lenses, and mirrors, and extends them into the micro- and millimetre wavelength range. In this regime there are a number of applications in devices, such as automobile proximity sensors, satellite-TV rece

Fusion Plasma Diagnostics with mm-Waves

Fusion Plasma Diagnostics with mm-Waves
Author: Hans-Jürgen Hartfuß
Publisher: John Wiley & Sons
Total Pages: 429
Release: 2013-08-22
Genre: Science
ISBN: 3527676244

Filling a gap in the literature, this introduction to the topic covers the physics of the standard microwave diagnostics established on modern fusion experiments, and the necessary technological background from the field of microwave engineering. Written by well-known mm-wave diagnosticians in the field of fusion physics, the textbook includes such major diagnostic techniques as electron cyclotron emission, interferometry, reflectometry, polarimetry, and scattering.

Millimetre-Wave Optics, Devices and Systems

Millimetre-Wave Optics, Devices and Systems
Author: J.C.G Lesurf
Publisher: Routledge
Total Pages: 276
Release: 2017-10-05
Genre: Science
ISBN: 1351431323

The millimetre-wavelength region of the electromagnetic spectrum is increasingly exploited for a wide range of commercial, industrial, and military applications. Conventionally, this region is considered as lying "above" microwaves and "below" the infrared. Hence, in practice, millimetre-wave scientists have tended to pick and mix useful techniques on an empirical basis from both these areas. Millimetre-Wave Optics, Devices and Systems describes the fundamental physics of the quasi-optical techniques, devices, and system design for instruments processing millimetre-wave signals. Relevant ideas from Gaussian beam mode theory and antenna and transmission line theory are brought together to show the underlying unity of optics and electronics. Aimed at advanced undergraduates and postgraduates as well as millimetre-wave, laser optics, antenna, and microwave engineers, this book will also be of interest to manufacturers of millimetre-wave and microwave equipment.

Modeling Fluctuations in Scattered Waves

Modeling Fluctuations in Scattered Waves
Author: E. Jakeman
Publisher: CRC Press
Total Pages: 333
Release: 2006-06-19
Genre: Science
ISBN: 1420012169

Fluctuations in scattered waves limit the performance of imaging and remote sensing systems that operate on all wavelengths of the electromagnetic spectrum. To better understand these fluctuations, Modeling Fluctuations in Scattered Waves provides a practical guide to the phenomenology, mathematics, and simulation of non-Gaussian noise models and d

The Electrical Engineering Handbook - Six Volume Set

The Electrical Engineering Handbook - Six Volume Set
Author: Richard C. Dorf
Publisher: CRC Press
Total Pages: 3672
Release: 2018-12-14
Genre: Technology & Engineering
ISBN: 1420049755

In two editions spanning more than a decade, The Electrical Engineering Handbook stands as the definitive reference to the multidisciplinary field of electrical engineering. Our knowledge continues to grow, and so does the Handbook. For the third edition, it has grown into a set of six books carefully focused on specialized areas or fields of study. Each one represents a concise yet definitive collection of key concepts, models, and equations in its respective domain, thoughtfully gathered for convenient access. Combined, they constitute the most comprehensive, authoritative resource available. Circuits, Signals, and Speech and Image Processing presents all of the basic information related to electric circuits and components, analysis of circuits, the use of the Laplace transform, as well as signal, speech, and image processing using filters and algorithms. It also examines emerging areas such as text to speech synthesis, real-time processing, and embedded signal processing. Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar delves into the fields of electronics, integrated circuits, power electronics, optoelectronics, electromagnetics, light waves, and radar, supplying all of the basic information required for a deep understanding of each area. It also devotes a section to electrical effects and devices and explores the emerging fields of microlithography and power electronics. Sensors, Nanoscience, Biomedical Engineering, and Instruments provides thorough coverage of sensors, materials and nanoscience, instruments and measurements, and biomedical systems and devices, including all of the basic information required to thoroughly understand each area. It explores the emerging fields of sensors, nanotechnologies, and biological effects. Broadcasting and Optical Communication Technology explores communications, information theory, and devices, covering all of the basic information needed for a thorough understanding of these areas. It also examines the emerging areas of adaptive estimation and optical communication. Computers, Software Engineering, and Digital Devices examines digital and logical devices, displays, testing, software, and computers, presenting the fundamental concepts needed to ensure a thorough understanding of each field. It treats the emerging fields of programmable logic, hardware description languages, and parallel computing in detail. Systems, Controls, Embedded Systems, Energy, and Machines explores in detail the fields of energy devices, machines, and systems as well as control systems. It provides all of the fundamental concepts needed for thorough, in-depth understanding of each area and devotes special attention to the emerging area of embedded systems. Encompassing the work of the world's foremost experts in their respective specialties, The Electrical Engineering Handbook, Third Edition remains the most convenient, reliable source of information available. This edition features the latest developments, the broadest scope of coverage, and new material on nanotechnologies, fuel cells, embedded systems, and biometrics. The engineering community has relied on the Handbook for more than twelve years, and it will continue to be a platform to launch the next wave of advancements. The Handbook's latest incarnation features a protective slipcase, which helps you stay organized without overwhelming your bookshelf. It is an attractive addition to any collection, and will help keep each volume of the Handbook as fresh as your latest research.

Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar

Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar
Author: Richard C. Dorf
Publisher: CRC Press
Total Pages: 888
Release: 2018-10-03
Genre: Technology & Engineering
ISBN: 1420003151

In two editions spanning more than a decade, The Electrical Engineering Handbook stands as the definitive reference to the multidisciplinary field of electrical engineering. Our knowledge continues to grow, and so does the Handbook. For the third edition, it has expanded into a set of six books carefully focused on a specialized area or field of study. Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar represents a concise yet definitive collection of key concepts, models, and equations in these areas, thoughtfully gathered for convenient access. Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar delves into the fields of electronics, integrated circuits, power electronics, optoelectronics, electromagnetics, light waves, and radar, supplying all of the basic information required for a deep understanding of each area. It also devotes a section to electrical effects and devices and explores the emerging fields of microlithography and power electronics. Articles include defining terms, references, and sources of further information. Encompassing the work of the world’s foremost experts in their respective specialties, Electronics, Power Electronics, Optoelectronics, Microwaves, Electromagnetics, and Radar features the latest developments, the broadest scope of coverage, and new material in emerging areas.

An Introduction to Biomedical Optics

An Introduction to Biomedical Optics
Author: Robert Splinter
Publisher: CRC Press
Total Pages: 640
Release: 2006-12-13
Genre: Science
ISBN: 9780750309387

Many universities now offer a course in biomedical optics, but lack a textbook specifically addressing the topic. Intended to fill this gap, An Introduction to Biomedical Optics is the first comprehensive, introductory text describing both diagnostic and therapeutic optical methods in medicine. It provides the fundamental background needed for graduate students in biomedical and electrical engineering, physics, biology, and medicine to learn about several biomedical optics issues. The textbook is divided into three main sections: general optics theory, therapeutic applications of light, and diagnostic optical methods. Each chapter has different levels of detail to build students' knowledge from one level to the next. The first section covers the history of optics theory and the basic science behind light-tissue interactions. It also introduces the relevant approaches and approximations used to describe light propagation in turbid biological media. In the second section, the authors look more closely at light-tissue interactions and their applications in different medical areas, such as wound healing and tissue welding. The final section examines the various diagnostic methods that are employed using optical techniques. Throughout the text, the authors employ numerical examples of clinical and research requirements. Fulfilling the need for a concise biomedical optics textbook, An Introduction to Biomedical Optics addresses the theory and applications of this growing field.