Dynamics of Heterogeneous Materials

Dynamics of Heterogeneous Materials
Author: V. F. Nesterenko
Publisher: Springer Science & Business Media
Total Pages: 548
Release: 2001-09-21
Genre: Science
ISBN: 9780387952666

This monograph deals with the behavior of essentially nonlinear heterogeneous materials in processes occurring under intense dynamic loading, where microstructural effects play the main role. This book is not an introduction to the dynamic behavior of materials, and general information available in other books is not included. The material herein is presented in a form I hope will make it useful not only for researchers working in related areas, but also for graduate students. I used it successfully to teach a course on the dynamic behavior of materials at the University of California, San Diego. Another course well suited to the topic may be nonlinear wave dynamics in solids, especially the part on strongly nonlinear waves. About 100 problems presented in the book at the end of each chapter will help the reader to develop a deeper understanding of the subject. I tried to follow a few rules in writing this book: (1) To focus on strongly nonlinear phenomena where there is no small parameter with respect to the amplitude of disturbance, including solitons, shock waves, and localized shear. (2) To take into account phenomena sensitive to materials structure, where typical space scale of material parameters (particle size, cell size) are presented in the models or are variable in experimental research.

Random Heterogeneous Materials

Random Heterogeneous Materials
Author: Salvatore Torquato
Publisher: Springer Science & Business Media
Total Pages: 720
Release: 2013-04-17
Genre: Mathematics
ISBN: 1475763557

This accessible text presents a unified approach of treating the microstructure and effective properties of heterogeneous media. Part I deals with the quantitative characterization of the microstructure of heterogeneous via theoretical methods; Part II treats a wide variety of effective properties of heterogeneous materials and how they are linked to the microstructure, accomplished by using rigorous methods.

Plasticity

Plasticity
Author: S. Nemat-Nasser
Publisher: Cambridge University Press
Total Pages: 858
Release: 2004-11-29
Genre: Mathematics
ISBN: 9780521839792

Publisher Description

Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces

Equilibria and Dynamics of Gas Adsorption on Heterogeneous Solid Surfaces
Author: W.A. Steele
Publisher: Elsevier
Total Pages: 909
Release: 1996-12-17
Genre: Technology & Engineering
ISBN: 0080531199

The fact that the surfaces of real solids are geometrically distorted and chemically non-uniform has long been realized by the scientists investigating various phenomena occurring on solid surfaces. Even in the case when diffraction experiments show a well-organized bulk solid structure, the surface atoms or molecules will usually exhibit a much smaller degree of surface organization. In addition to the results obtained from electron diffraction, this can be seen in the impressive images obtained from STM and AFM microscopies. This geometric and chemical disorder is the source of the energetic heterogeneity for molecules adsorbing on real solid surfaces. Hundreds of papers have been published showing that this heterogeneity is a major factor in determining the behaviour of real adsorption systems.Studies of adsorption on energetically heterogeneous surfaces have proceeded along three somewhat separate paths, with only minor coupling of ideas. One was the study of adsorption equilibria on heterogeneous solid surfaces. The second path was the study of time evolution of adsorption processes such as surface diffusion or adsorption-desorption kinetics on heterogeneous surfaces, and the third was the study of adsorption in porous solids, or more generally, adsorption in systems with limited dimensions. The present monograph is a first attempt to provide a synthesis of the ways that surface geometric and energetic heterogeneities affect both the equilibria and the time evolution of adsorption on real solids. The book contains 17 chapters written by a team of internationally recognized specialists, some of whom have already published books on adsorption.

Dynamics of Materials

Dynamics of Materials
Author: Lili Wang
Publisher: Academic Press
Total Pages: 612
Release: 2019-07-25
Genre: Technology & Engineering
ISBN: 012817322X

Dynamics of Materials: Experiments, Models and Applications addresses the basic laws of high velocity flow/deformation and dynamic failure of materials under dynamic loading. The book comprehensively covers different perspectives on volumetric law, including its macro-thermodynamic basis, solid physics basis, related dynamic experimental study, distortional law, including the rate-dependent macro-distortional law reflecting strain-rate effect, its micro-mechanism based on dislocation dynamics, and dynamic experimental research based on the stress wave theory. The final section covers dynamic failure in relation to dynamic damage evolution, including the unloading failure of a crack-free body, dynamics of cracks under high strain-rate, and more. - Covers models for applications, along with the fundamentals of the mechanisms behind the models - Tackles the difficult interdisciplinary nature of the subject, combining macroscopic continuum mechanics with thermodynamics and macro-mechanics expression with micro-physical mechanisms - Provides a review of the latest experimental methods for the equation of state for solids under high pressure and the distortional law under high strain-rates of materials

Linear and Nonlinear Waves in Microstructured Solids

Linear and Nonlinear Waves in Microstructured Solids
Author: Igor V. Andrianov
Publisher: CRC Press
Total Pages: 322
Release: 2021-04-22
Genre: Technology & Engineering
ISBN: 1000372219

This book uses asymptotic methods to obtain simple approximate analytic solutions to various problems within mechanics, notably wave processes in heterogeneous materials. Presenting original solutions to common issues within mechanics, this book builds upon years of research to demonstrate the benefits of implementing asymptotic techniques within mechanical engineering and material science. Focusing on linear and nonlinear wave phenomena in complex micro-structured solids, the book determines their global characteristics through analysis of their internal structure, using homogenization and asymptotic procedures, in line with the latest thinking within the field. The book’s cutting-edge methodology can be applied to optimal design, non-destructive control and in deep seismic sounding, providing a valuable alternative to widely used numerical methods. Using case studies, the book covers topics such as elastic waves in nonhomogeneous materials, regular and chaotic dynamics based on continualisation and discretization and vibration localization in 1D Linear and Nonlinear lattices. The book will be of interest to students, research engineers, and professionals specialising in mathematics and physics as well as mechanical and civil engineering.

Homogenization of Coupled Phenomena in Heterogenous Media

Homogenization of Coupled Phenomena in Heterogenous Media
Author: Jean-Louis Auriault
Publisher: John Wiley & Sons
Total Pages: 479
Release: 2010-01-05
Genre: Technology & Engineering
ISBN: 0470610441

Both naturally-occurring and man-made materials are often heterogeneous materials formed of various constituents with different properties and behaviours. Studies are usually carried out on volumes of materials that contain a large number of heterogeneities. Describing these media by using appropriate mathematical models to describe each constituent turns out to be an intractable problem. Instead they are generally investigated by using an equivalent macroscopic description - relative to the microscopic heterogeneity scale - which describes the overall behaviour of the media. Fundamental questions then arise: Is such an equivalent macroscopic description possible? What is the domain of validity of this macroscopic description? The homogenization technique provides complete and rigorous answers to these questions. This book aims to summarize the homogenization technique and its contribution to engineering sciences. Researchers, graduate students and engineers will find here a unified and concise presentation. The book is divided into four parts whose main topics are Introduction to the homogenization technique for periodic or random media, with emphasis on the physics involved in the mathematical process and the applications to real materials. Heat and mass transfers in porous media Newtonian fluid flow in rigid porous media under different regimes Quasi-statics and dynamics of saturated deformable porous media Each part is illustrated by numerical or analytical applications as well as comparison with the self-consistent approach.