Microwave Absorbing Materials

Microwave Absorbing Materials
Author: Yuping Duan
Publisher: CRC Press
Total Pages: 382
Release: 2016-10-14
Genre: Science
ISBN: 1315341034

With the phenomenal development of electromagnetic wave communication devices and stealth technology, electromagnetic wave absorbing materials have been attracting attention as antielectromagnetic interference slabs, stealth materials, self-concealing technology, and microwave darkrooms. This book starts with the fundamental theory of electromagnetic wave absorption in loss medium space, followed by a discussion of different microwave absorbents, such as manganese dioxide, iron-based composite powder, conductive polyaniline, barium titanate powder, and manganese nitride. Then, structural absorbing materials are explored, including multilayer materials, new discrete absorbers, microwave absorption coatings, cement-based materials, and structural pyramid materials. Many of the graphics demonstrate not only the principles of physics and experimental results but also the methodology of computing. The book will be useful for graduate students of materials science and engineering, physics, chemistry, and electrical and electronic engineering; researchers in the fields of electromagnetic functional materials and nanoscience; and engineers in the fields of electromagnetic compatibility and stealth design.

Metamaterial Electromagnetic Wave Absorbers

Metamaterial Electromagnetic Wave Absorbers
Author: Willie J. Padilla
Publisher: Morgan & Claypool Publishers
Total Pages: 199
Release: 2022-01-24
Genre: Science
ISBN: 1636392601

Electromagnetic metamaterials are a family of shaped periodic materials which achieve extraordinary scattering properties that are difficult or impossible to achieve with naturally occurring materials. This book focuses on one such feature of electromagnetic metamaterials—the theory, properties, and applications of the absorption of electromagnetic radiation. We have written this book for undergraduate and graduate students, researchers, and practitioners, covering the background and tools necessary to engage in the research and practice of metamaterial electromagnetic wave absorbers in various fundamental and applied settings. Given the growing impact of climate change, the call for innovations that can circumvent the use of conventional energy sources will be increasingly important. As we highlight in Chapter 6, the absorption of radiation with electromagnetic metamaterials has been used for energy harvesting and energy generation, and will help to reduce reliance on fossil fuels. Other applications ranging from biochemical sensing to imaging are also covered. We hope this book equips interested readers with the tools necessary to successfully engage in applied metamaterials research for clean, sustainable energy. This book consists of six chapters. Chapter 1 provides an introduction and a brief history of electromagnetic wave absorbers; Chapter 2 focuses on several theories of perfect absorbers; Chapter 3 discusses the scattering properties achievable with metamaterial absorbers; Chapter 4 provides significant detail on the fabricational processes; Chapter 5 discusses examples of dynamical absorbers; and Chapter 6 highlights applications of metamaterial absorbers.

Electromagnetic Wave Absorbing Materials

Electromagnetic Wave Absorbing Materials
Author: Hongjing Wu
Publisher: John Wiley & Sons
Total Pages: 277
Release: 2024-11-12
Genre: Technology & Engineering
ISBN: 1119699347

Summary of materials, material design, and process methods for electromagnetic wave absorption and shielding in the electronics industry Electromagnetic Wave Absorbing Materials presents information on the most promising electromagnetic wave absorbing materials, with timely coverage of both conventional and novel materials including 1D, 2D, and 3D materials. This book enables readers to address the growing specification needs in the field through optimizing electromagnetic parameters and promoting interface polarization, two key properties for wireless technology in electronic applications. This book is part of the Wiley Series in Materials for Electronic and Optoelectronic Applications. Edited by three highly qualified academics with significant relevant research experience, Electromagnetic Wave Absorbing Materials includes discussions on: Materials including ferrites, graphene, carbon-based composite absorbers, SiC ceramics, MOFs, and meta-material based absorbers Recent advances in the field surrounding composite absorbers, conductive polymers, and ceramics, and other materials Potential improvements in the Internet of Things, 5G mobile applications, and intelligent transport systems through electromagnetic wave absorbing materials Applications including terrestrial and satellite communication (software radio, GPS, and satellite TV), environmental monitoring via satellite, and EMI shielding, as well as stealth applications Electromagnetic Wave Absorbing Materials is an essential reference on the subject for researchers and advanced students in the chemical, electronics, and communications industries, as well as R&D scientists at companies such as Apple, HUAWEI, and China Aerospace Science and Technology Corp (CASC).

Carbon Nanofibers

Carbon Nanofibers
Author: Madhuri Sharon
Publisher: John Wiley & Sons
Total Pages: 448
Release: 2021-02-09
Genre: Technology & Engineering
ISBN: 1119769132

This book covers the fundamentals and applications of Carbon Nanofiber (CNF). In the first section, the initial chapter on the fundamentals of CNF is by Professor Maheshwar Sharon, the recognized “Father of Carbon Nanotechnology in India”, which powerfully provides a succinct overview of CNFs. This is followed by a chapter on biogenics that have produced unique morphologies of CNF that makes them suitable to various applications. This is followed by a chapter that mainly focuses on nanocomposites, especially those involving nanocomposites of CNF. The role of nanocatalysts and composites in promoting and enhancing the synthesis and application of CNF is then covered, followed by an important chapter on the characterization of CNF. The second section of the book encompasses the various applications of CNF, such as its use as a possible superconductor to adsorb and store hydrogen, and as a microwave absorber. The application of CNF for environmental concerns is also detailed by assessing its usefulness in dye and heavy metal removal from polluted water. The applications that are addressed include lithium-ion battery, solar cell, antenna, cosmetics, usefulness in regenerative medicine, as well as various aspects of agrotechnology.

Electromagnetic Wave Absorbers

Electromagnetic Wave Absorbers
Author: Youji Kotsuka
Publisher: John Wiley & Sons
Total Pages: 336
Release: 2019-09-18
Genre: Science
ISBN: 1119564123

Addresses the importance of EM wave absorbers and details pertinent theory, design, and applications Demands for various EM-wave absorbers are rapidly increasing along with recent trends toward complicated electromagnetic environments and development of higher-frequency communication equipment, including AI technology. This book provides a broad perspective on electromagnetic wave absorbers, as well as discussion of specific types of absorbers, their advantages and disadvantages, their applications, and performance verification. Electromagnetic Wave Absorbers: Detailed Theories and Applications presents the theory behind wave absorbers and their practical usage in design of EM-wave absorber necessary particularly for EMC environments, and similar applications. The first half of the book contains the foundations of electromagnetic wave engineering, specifically the transmission line theories necessary for EM-wave absorber analysis, the basic knowledge of reflection, transmission, and absorption of electromagnetic waves, derivation of Maxwell's equations and computer analysis. The second half describes special mediums, absorber application examples, simplified methods of absorber design, autonomously controllable EM-wave absorber, and more. This valuable text: Provides detailed explanations of basic theory and applied theory for understanding EM-wave absorbers Discusses the material constant measurement methods of EM-wave absorption characteristics that are necessary for designing EM-wave absorbers Includes examples of novel EM-wave absorber configurations Electromagnetic Wave Absorbers: Detailed Theories and Applications is an ideal read for researchers and students concerned with electromagnetic wave engineering. It will also appeal to computer software engineers and electromagnetic field theory researchers.

Electromagnetic Wave Absorption and Shielding Materials

Electromagnetic Wave Absorption and Shielding Materials
Author: Wei Lu
Publisher: CRC Press
Total Pages: 325
Release: 2024-07-12
Genre: Technology & Engineering
ISBN: 1040050689

This book reveals the latest research findings and innovations in electromagnetic wave absorption and shielding by exploring the design and application of absorbent materials, the optimization of shielding structures and the improvement of testing and evaluation methods. From conductive materials to magnetic materials, and composite materials to nanomaterials, Electromagnetic Wave Absorption and Shielding Materials details the characteristics and advantages of various absorbent materials and explains their applications in electromagnetic wave absorption and shielding. It then introduces the different methods of electromagnetic shielding, including structural shielding and material shielding. The book also studies experimental and testing techniques, including measurement methods and evaluation criteria for electromagnetic wave absorption performance. The book will be of interest to researchers and graduate students in electromagnetic compatibility, materials science and engineering.

Frequency Selective Surfaces

Frequency Selective Surfaces
Author: Ben A. Munk
Publisher: John Wiley & Sons
Total Pages: 442
Release: 2005-03-11
Genre: Technology & Engineering
ISBN: 0471723762

"...Ben has been the world-wide guru of this technology, providing support to applications of all types. His genius lies in handling the extremely complex mathematics, while at the same time seeing the practical matters involved in applying the results. As this book clearly shows, Ben is able to relate to novices interested in using frequency selective surfaces and to explain technical details in an understandable way, liberally spiced with his special brand of humor... Ben Munk has written a book that represents the epitome of practical understanding of Frequency Selective Surfaces. He deserves all honors that might befall him for this achievement." -William F. Bahret. Mr. W. Bahret was with the United States Air Force but is now retired. From the early 50s he sponsored numerous projects concerning Radar Cross Section of airborne platforms in particular antennas and absorbers. Under his leadership grew many of the concepts used extensively today, as for example the metallic radome. In fact, he is by many considered to be the father of stealth technology. "This book compiles under one cover most of Munk's research over the past three decades. It is woven with the physical insight that he has gained and further developed as his career has grown. Ben uses mathematics to whatever extent is needed, and only as needed. This material is written so that it should be useful to engineers with a background in electromagnetics. I strongly recommend this book to any engineer with any interest in phased arrays and/or frequency selective surfaces. The physical insight that may be gained from this book will enhance their ability to treat additional array problems of their own." -Leon Peters, Jr. Professor Leon Peters, Jr., was a professor at the Ohio State University but is now retired. From the early sixties he worked on, among many other things, RCS problems involving antennas and absorbers. This book presents the complete derivation of the Periodic Method of Moments, which enables the reader to calculate quickly and efficiently the transmission and reflection properties of multi-layered Frequency Selective Surfaces comprised of either wire and/or slot elements of arbitrary shape and located in a stratified medium. However, it also gives the reader the tools to analyze multi-layered FSS's leading to specific designs of the very important Hybrid Radome, which is characterized by constant band width with angle of incidence and polarization. Further, it investigates in great detail bandstop filters with large as well as narrow bandwidth (dichroic surfaces). It also discusses for the first time, lossy elements used in producing Circuit Analog absorbers. Finally, the last chapter deals with power breakdown of FSS's when exposed to pulsed signals with high peak power. The approach followed by most other presentations simply consists of expanding the fields around the FSS, matching the boundary conditions and writing a computer program. While this enables the user to obtain calculated results, it gives very little physical insight and no help in how to design actual multi-layered FSS's. In contrast, the approach used in this title analyzes all curves of desired shapes. In particular, it discusses in great detail how to produce radomes made of FSS's located in a stratified medium (Hybrid Radomes), with constant band width for all angles of incidence and polarizations. Numerous examples are given of great practical interest. More specifically, Chapter 7 deals with the theory and design of bandpass radomes with constant bandwidth and flat tops. Examples are given for mono-, bi- and tri-planar designs. Chapter 8 deals with bandstop filters with broad as well as narrow bandwidth. Chapter 9 deals with multi-layered FSS of lossy elements, namely the so-called Circuit Analog Absorbers, designed to yield outstanding absorption with more than a decade of bandwidth. Features material previously labeled as classified by the United States Air Force.

Waves

Waves
Author: Mike Goldsmith
Publisher:
Total Pages: 161
Release: 2018
Genre: Science
ISBN: 0198803788

From sound waves to gravitational waves, and from waves of light to crashing rollers on the ocean, Mike Goldsmith explores the fundamental features shared by all waves in the natural world, and considers the range of phenomena resulting from wave motion, including reflection, diffraction, and polarization in light, and beats and echoes in sound.