Emerging Applications of Nanoparticles and Architectural Nanostructures

Emerging Applications of Nanoparticles and Architectural Nanostructures
Author: Abdel Salam Hamdy Makhlouf
Publisher: William Andrew
Total Pages: 650
Release: 2018-03-22
Genre: Science
ISBN: 0128135166

Emerging Applications of Nanoparticles and Architecture Nanostructures: Current Prospects and Future Trends discusses the most important current applications of nanoparticles and architecture nanostructures in a comprehensive, detailed manner. The book covers major applications of nanoparticles and architecture nanostructures, taking into account their unusual shapes and high surface areas. In particular, coverage is given to applications in aerospace, automotive, batteries, sensors, smart textile design, energy conversion, color imaging, printing, computer chips, medical implants, pharmacy, cosmetics, and more. In addition, the book discusses the future of research in these areas. This is a valuable reference for both materials scientists, chemical and mechanical engineers working both in R&D and academia who want to learn more on how nanoparticles and nanomaterials are commercially applied. - Provides an in-depth look at the properties of nanoparticles and architecture nanostructures in terms of their applicability for industrial uses - Analyzes the most recent advances and industrial applications of different types of nanoparticles and architecture nanostructures, taking into account their unusual structures and compositions - Identifies novel nanometric particles and architectures that are of particular value for applications and the techniques required to use them effectively

Bionanotechnology: Emerging Applications of Bionanomaterials

Bionanotechnology: Emerging Applications of Bionanomaterials
Author: Ahmed Barhoum
Publisher: Elsevier
Total Pages: 572
Release: 2022-05-29
Genre: Technology & Engineering
ISBN: 0128242205

Bionanotechnology: Emerging Applications of Bionanomaterials highlights a wide range of industrial applications using bionanotechnologies, with biomedical applications prominent amongst these, including drug delivery, tissue engineering, wound healing, medical implants, medical diagnostics and therapy. Other key areas include energy harvesting and storage, water/waste treatment, papermaking, textiles, construction industry, automotive, aerospace. This book is a valuable resource for all those seeking to gain a fundamental understanding of how bionanomaterials are used in a variety of industry sectors. Bionanomaterials are molecular materials composed partially or completely of biological molecules - such as proteins, enzymes, viruses, DNA and biopolymers - as well as metal, metal oxides, and carbon nanomaterials. Bionanomaterials have drawn much attention for their use in a wide range of industrial applications, including scaffolds, dental implants, drug delivery, dialysis, biobatteries, biofuel cells, air purification, and water treatment. - Assesses which bionanomaterial types are particularly suited to particular application areas - Shows how bionanomaterials are being used for biotechnology, biomedicine, energy production, energy storage, and environmental remediation applications - Highlights the challenges and interdisciplinary perspectives of bionanomaterials in science, biology, engineering, medicine, and technology, incorporating both fundamentals and applications

Handbook of Nanocelluloses

Handbook of Nanocelluloses
Author: Ahmed Barhoum
Publisher: Springer Nature
Total Pages: 1081
Release: 2022-07-15
Genre: Science
ISBN: 3030896218

This Handbook covers the fundamental aspects, experimental setup, synthesis, properties, and characterization of different nanocelluloses. It also explores the technology challenges of nanocelluloses and the emerging applications and the global markets of nanocelluloses-based systems. In particular, this book: · Covers the history of nanocelluloses, types and classifications, fabrication techniques, critical processing parameters, physical and chemical properties, surface functionalization, and other treatments to allow practical applications. · Covers all recent aspects of nanocelluloses technologies, from experimental set-up to industrial applications. · Includes new physical, chemical and biological techniques for nanocelluloses fabrication, in-depth treatment of their surface functionalization, and characterization. · Discusses the unique properties of nanocelluloses that can be obtained by modifying their diameter, morphology, composition and dispersion in other materials. · Discusses the properties and morphology of several kinds of dispersion in polymeric materials, such as micro/nanofiberlated cellulose, cellulose nanofibers, cellulose nanocrystals, amorphous cellulose nanoparticles, and hybrid cellulose nanomaterials. · Presents the different techniques for dispersion, and self-assembly of polymeric materials, critical parameters of synthesis, modelling and simulation, and characterization methods. · Highlights a wide range of emerging applications of nanocelluloses, e.g. drug delivery, tissue engineering, medical implants, medical diagnostics and therapy, biosensors, catalysis, energy harvesting, energy storage, water/waste treatment, papermaking, textiles, construction industry, automotive, aerospace and many more. · Provides an outlook on the opportunities and challenges for the fabrication and manufacturing of nanocelluloses in industry. · Provides an in-depth look at the nature of nanocelluloses in terms of their applicability for industrial uses. · Provides in-depth insight and review on most recent types of nanocelluloses-based systems of unique structures and compositions. · Highlights the challenges and interdisciplinary perspective of nanocelluloses-based systems in science, biology, engineering, medicine, and technology, incorporating both fundamentals and applications. - Demonstrates how cutting-edge developments in nanofibers translate into real-world innovations in a range of industry sectors. This Handbook is a valuable reference for materials scientists, biologists, physicians, chemical, biomedical, manufacturing and mechanical engineers working in R&D industry and academia, who want to learn more about how nanocelluloses-based systems are commercially applied.

Molecular Building Blocks for Nanotechnology

Molecular Building Blocks for Nanotechnology
Author: G.Ali Mansoori
Publisher: Springer Science & Business Media
Total Pages: 439
Release: 2007-09-14
Genre: Technology & Engineering
ISBN: 0387399380

This book takes a "bottom-up" approach, beginning with atoms and molecules – molecular building blocks – and assembling them to build nanostructured materials. Coverage includes Carbon Nanotubes, Nanowires, and Diamondoids. The applications presented here will enable practitioners to design and build nanometer-scale systems. These concepts have far-reaching implications: from mechanical to chemical processes, from electronic components to ultra-fine sensors, from medicine to energy, and from pharmaceuticals to agriculture and food.

Design of Nanostructures for Theranostics Applications

Design of Nanostructures for Theranostics Applications
Author: Alexandru Mihai Grumezescu
Publisher: William Andrew
Total Pages: 695
Release: 2017-11-30
Genre: Science
ISBN: 0128136707

Design of Nanostructures for Theranostics Applications focuses on the theranostics applications of nanostructures. In particular, multifunctional nanoparticles for diagnostics and treatment of different diseases, including those relating to the blood-brain barrier, are discussed in detail. Chapters explore different type of nanostructures, covering design, fabrication, functionalization and optimization, helping readers obtain the desired properties. Written by a diverse range of international academics, this book is a valuable reference resource for those working in both nanoscience and the pharmaceutical industry. - Explores how the design of a range of nanomaterials make them effective theranostic agents, including multifunctional core-shell nanostructures, mesoporous silica nanoparticles, and quantum dots - Shows how nanomaterials are used effectively for a range of diseases, including breast cancer, prostate cancer and neurological disorders - Assesses the pros and cons of using different nanomaterials for different types of treatment

Advanced Functional Nanoparticles "Boon or Bane" for Environment Remediation Applications

Advanced Functional Nanoparticles
Author: Raman Kumar
Publisher: Springer Nature
Total Pages: 372
Release: 2023-06-18
Genre: Technology & Engineering
ISBN: 3031244168

This textbook provides an overview of applications of advanced nanomaterials, basic lab set up and requirements in for their synthesis, techniques and career scope of nanotechnology in industries and research. Pollution of air, water, soil is an ever increasing environmental problem attributed to increasing population, global industrialization and unplanned urbanization, has acquired alarming dimensions. It is the most dangerous and worst problem that puts the lives of people, animals, and plants on the earth in danger. An effective, efficient and sustainable approach for managing pollution related problems requires the utmost attention of the scientific community to tackle this menace for the society to lead a healthy and quality life. A number of techniques and books, literatures have been developed in recent years to treat environmental contaminants. However, most of these are not economically viable, environmentally benign and suffer due to cumbersome multi-step manipulations. The purpose of this textbook is to inform students about the application of functionalized nanoparticles as a new approach to supplement traditional treatment methods in cost and time effective manner. The simplistic means to assemble nanoparticles to the constituents of next generation technologies in environment cleanup and sensing are the main objectives of the book. The toxicological footprinting of released advanced functional nanomaterials in ecosystem will also be discussed in the book.

Nanotechnology for Smart Concrete

Nanotechnology for Smart Concrete
Author: Ghasan Fahim Huseien
Publisher: CRC Press
Total Pages: 238
Release: 2022-02-11
Genre: Technology & Engineering
ISBN: 1000538710

Nanomaterials can markedly improve the mechanical properties of concrete, as well as reduce the porosity and enhance the durability of concrete. The application of nanotechnology in concrete is still in its infancy. However, an ever-growing demand for ultra-high-performance concrete and recurring environmental pollution caused by ordinary Portland cement has encouraged engineers to exploit nanotechnology in the construction industry. Nanotechnology for Smart Concrete discusses the advantages and applications of nanomaterials in the concrete industry, including high-strength performance, microstructural improvement, self-healing, energy storage, and coatings. The book Analyses the linkage of concrete materials with nanomaterials and nanostructures Discusses the applications of nanomaterials in the concrete industry, including energy storage in green buildings, anti-corrosive coatings, and inhibiting pathogens and viruses Covers self-healing concrete Explores safety considerations, sustainability, and environmental impact of nanoconcrete Includes an appendix of solved questions This comprehensive and innovative text serves as a useful reference for upper-level undergraduate students, graduate students, and professionals in the fields of Civil and Construction Engineering, Materials Science and Engineering, and Nanomaterials. Dr. Ghasan Fahim Huseien is a research fellow at the Department of Building, School of Design and Environment, National University of Singapore, Singapore. He received his PhD degree from the University of Technology Malaysia in 2017. Dr. Huseien has over 5 years of Applied R&D and 10 years of experience in manufacturing smart materials for sustainable building and smart cities. He has expertise in Advanced Sustainable Construction Materials covering Civil Engineering, Environmental Sciences and Engineering. He has authored and co-authored 50+ publications and technical reports, 3 books, and 15 book chapters, and participated in 25 national and international conferences/workshops. He is a peer reviewer for several international journals as well as Master’s and PhD students. He is a member of the Concrete Society of Malaysia and the American Concrete Institute. Dr. Nur Hafizah Abd Khalid is a Senior Lecturer at the School of Civil Engineering, Universiti Teknologi, Malaysia (UTM), and is a research member of the Construction Material Research Group (CMRG). She is currently a Council Member of the Concrete Society Malaysia (CSM). She earned her Master’s degree on structure and materials in 2011 from the Universiti Teknologi Malaysia. She received a Young Women Scientist Award (representing Malaysia) in 2014 in South Korea by KWSE/APNN. She is currently appointed as an Inviting Researcher at Hunan University, China, funded under the Talented Young Scientist Program (TYSP). Her research interests focus on concrete structural systems, advanced concrete technology (green concrete technology and fibre reinforced concrete), civil engineering materials, polymer composites, and bio-composites. Professor Dr. Jahangir Mirza has over 35 years of Applied Research and Development (R&D) as well as teaching experience. He has expertise in Advanced Sustainable Construction Materials covering Civil Engineering, Environmental Sciences and Engineering, Chemistry, Earth Sciences, Geology, and Architecture departments. He has been a Senior Scientist at the Research Institute of Hydro-Quebec (IREQ), Montreal, Canada since 1985. He has been a Visiting Research Professor for the Environmental Engineering program at the University of Guelph in Ontario, Canada since 2018.

Handbook of Functionalized Carbon Nanostructures

Handbook of Functionalized Carbon Nanostructures
Author: Ahmed Barhoum
Publisher: Springer Nature
Total Pages: 2831
Release: 2024-11-30
Genre: Science
ISBN: 3031321502

This book highlights all newly reported carbon nanostructures including graphene and its derivatives, carbon nanotubes, metal organic frameworks, fullerenes, nanorods, nanospheres, nano onions, porous nanoparticles, nanohorns, nanofibers and nanoribbons, nanodiamonds, graphitic carbon nitrides, carbon aerogels and hydrogels, graphdiyne and graphenylene. It presents the historical development of carbon nanostructures technologies, different types and classifications, and different fabrication and functionalization techniques, including outer/inner surface functionalization and covalent and noncovalent functionalization. This Handbook discusses the unique properties of functionalized carbon nanostructures that can be obtained by modifying their structures, composition, and surface. It gives the reader an in-depth look at the current achievements of research and practice while pointing you ahead to new possibilities in functionalizing and using carbon nanomaterials. Finally, it covers the various applications of functionalized carbon nanostructures including adsorbents, additives, active materials in energy accumulating systems (batteries, hydrogen storage systems, and supercapacitors), filtering media, catalysts or supports for catalysts, sensors or substrates for sensors, additives for polymers, ceramic composites, metal and carbon alloys, glasses, digital textiles, and composite materials.

Nanomaterials in Architecture and Art Conservation

Nanomaterials in Architecture and Art Conservation
Author: Gerald Ziegenbalg
Publisher: CRC Press
Total Pages: 369
Release: 2018-11-09
Genre: Science
ISBN: 0429767935

The conservation and protection of buildings that constitute our cultural heritage are complex tasks calling for a comprehensive knowledge of the historical background of the buildings, as well as the construction technologies and materials used. Nanomaterials in Architecture and Art Conservation gives a comprehensive overview of the state of the art of using nanomaterials in conservation sciences, mainly for stone, mortar and plaster strengthening, but also for the consolidation of wall paintings. The book compiles and details deterioration mechanisms of stone and historical mortars, as well as methods of characterising and testing consolidation effects. The non- or semi-destructive characterisation methods that will be presented allow additional measurements to characterise objects before and after any interventions. Besides, general aspects of inorganic consolidants are targeted. The focus, in particular, is the application of nanolime as a new consolidation agent. Basic characteristics and application advices as well as beneficial combinations with other consolidation agents, such as silicic acid esters, are emphasised. What makes this book so special is the large number of practical applications described from the viewpoint of different restorers, offering a direct inside view of the procedure for the conservation of historical monuments. Restorers dealing with stone, mortar and plaster conservation; artists; advanced undergraduate- and graduate-level students of conservation science, art and nanotechnology; offices for the protection of monuments and heritage agencies; and researchers in materials science, conservation, nanotechnology and chemistry, especially those with an interest in applied sciences, will find this book a great reference.