Mathematics for Machine Learning

Mathematics for Machine Learning
Author: Marc Peter Deisenroth
Publisher: Cambridge University Press
Total Pages: 392
Release: 2020-04-23
Genre: Computers
ISBN: 1108569323

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.

Essential Mathematics for Games and Interactive Applications

Essential Mathematics for Games and Interactive Applications
Author: James M. Van Verth
Publisher: CRC Press
Total Pages: 706
Release: 2008-05-19
Genre: Art
ISBN: 0123742978

Essential Mathematics for Games and Interactive Applications, 2nd edition presents the core mathematics necessary for sophisticated 3D graphics and interactive physical simulations. The book begins with linear algebra and matrix multiplication and expands on this foundation to cover such topics as color and lighting, interpolation, animation and basic game physics. Essential Mathematics focuses on the issues of 3D game development important to programmers and includes optimization guidance throughout. The new edition Windows code will now use Visual Studio.NET. There will also be DirectX support provided, along with OpenGL - due to its cross-platform nature. Programmers will find more concrete examples included in this edition, as well as additional information on tuning, optimization and robustness. The book has a companion CD-ROM with exercises and a test bank for the academic secondary market, and for main market: code examples built around a shared code base, including a math library covering all the topics presented in the book, a core vector/matrix math engine, and libraries to support basic 3D rendering and interaction.

Guide to Essential Math

Guide to Essential Math
Author: Sy M. Blinder
Publisher: Newnes
Total Pages: 285
Release: 2013-02-14
Genre: Mathematics
ISBN: 0124071589

This book reminds students in junior, senior and graduate level courses in physics, chemistry and engineering of the math they may have forgotten (or learned imperfectly) that is needed to succeed in science courses. The focus is on math actually used in physics, chemistry, and engineering, and the approach to mathematics begins with 12 examples of increasing complexity, designed to hone the student's ability to think in mathematical terms and to apply quantitative methods to scientific problems. Detailed illustrations and links to reference material online help further comprehension. The second edition features new problems and illustrations and features expanded chapters on matrix algebra and differential equations. - Use of proven pedagogical techniques developed during the author's 40 years of teaching experience - New practice problems and exercises to enhance comprehension - Coverage of fairly advanced topics, including vector and matrix algebra, partial differential equations, special functions and complex variables

Essential Math for AI

Essential Math for AI
Author: Hala Nelson
Publisher: "O'Reilly Media, Inc."
Total Pages: 1128
Release: 2023-01-04
Genre: Computers
ISBN: 1098107586

Companies are scrambling to integrate AI into their systems and operations. But to build truly successful solutions, you need a firm grasp of the underlying mathematics. This accessible guide walks you through the math necessary to thrive in the AI field such as focusing on real-world applications rather than dense academic theory. Engineers, data scientists, and students alike will examine mathematical topics critical for AI--including regression, neural networks, optimization, backpropagation, convolution, Markov chains, and more--through popular applications such as computer vision, natural language processing, and automated systems. And supplementary Jupyter notebooks shed light on examples with Python code and visualizations. Whether you're just beginning your career or have years of experience, this book gives you the foundation necessary to dive deeper in the field. Understand the underlying mathematics powering AI systems, including generative adversarial networks, random graphs, large random matrices, mathematical logic, optimal control, and more Learn how to adapt mathematical methods to different applications from completely different fields Gain the mathematical fluency to interpret and explain how AI systems arrive at their decisions

Mastering Essential Math Skills

Mastering Essential Math Skills
Author: Richard W. Fisher
Publisher:
Total Pages: 0
Release: 2003-01-15
Genre: Activity programs in education
ISBN: 9780966621112

Provides structure and guidance to the teacher by means of speed drills, review exercises, teacher tips, word problems and new material for each day.

The Art of Problem Solving, Volume 1

The Art of Problem Solving, Volume 1
Author: Sandor Lehoczky
Publisher: Mitchell Beazley
Total Pages: 0
Release: 2006
Genre: Mathematics
ISBN: 9780977304561

" ... offer[s] a challenging exploration of problem solving mathematics and preparation for programs such as MATHCOUNTS and the American Mathematics Competition."--Back cover

AI Mastery Trilogy

AI Mastery Trilogy
Author: Andrew Hinton
Publisher: Book Bound Studios
Total Pages: 309
Release:
Genre: Business & Economics
ISBN: 1761590073

Dive into the "AI Mastery Trilogy," the ultimate collection for professionals seeking to conquer the world of artificial intelligence (AI). This 3-in-1 compendium is meticulously crafted to guide you from the foundational principles of AI to the intricate mathematical frameworks and practical coding applications that will catapult your expertise to new heights. Book 1: "AI Basics for Managers" by Andrew Hinton is your gateway to understanding and implementing AI in business. It equips managers with the knowledge to navigate the AI landscape, identify opportunities, and lead their organizations toward a future of innovation and growth. Book 2: "Essential Math for AI" demystifies the mathematical backbone of AI, offering a deep dive into the core concepts that fuel AI systems. From linear algebra to game theory, this book is a treasure trove for anyone eager to grasp the numerical and logical foundations that underpin AI's transformative power. Book 3: "AI and ML for Coders" is the hands-on manual for coders ready to harness AI and machine learning in their projects. It provides a comprehensive overview of AI and ML technologies, practical coding advice, and ethical considerations, ensuring you're well-equipped to create cutting-edge, responsible AI applications. The "AI Mastery Trilogy" is more than just a set of books; it's a comprehensive learning journey designed to empower business leaders, mathematicians, and coders alike. Whether you're looking to lead, understand, or build the future of AI, this collection is an indispensable resource for mastering the art and science of one of the most exciting fields in technology. Embrace the AI revolution and secure your copy of the "AI Mastery Trilogy" today!

Principles and Applications of Quantum Computing Using Essential Math

Principles and Applications of Quantum Computing Using Essential Math
Author: Daniel, A.
Publisher: IGI Global
Total Pages: 251
Release: 2023-09-12
Genre: Mathematics
ISBN: 1668475375

In the swiftly evolving realm of technology, the challenge of classical computing's constraints in handling intricate problems has become pronounced. While classical computers excel in many areas, they struggle with complex issues in cryptography, optimization, and molecular simulation. Addressing these escalating challenges requires a disruptive solution to push the boundaries of computation and innovation. Principles and Applications of Quantum Computing Using Essential Math, authored by A. Daniel, M. Arvindhan, Kiranmai Bellam, and N. Krishnaraj. This guide pioneers the transformative potential of quantum computing by seamlessly blending rigorous mathematics with quantum theory. It equips scholars, researchers, and aspiring technologists with insights to grasp and harness quantum computing's capabilities. By delving into quantum gates, algorithms, and error correction techniques, the book demystifies quantum computing, inviting exploration of quantum machine learning, cryptography, and the dynamic interplay between classical and quantum computing. As the quantum landscape expands, this book acts as a vital companion, navigating readers through the converging realms of industry, academia, and innovation. Principles and Applications of Quantum Computing Using Essential Math arrives as a timely answer to the limitations of classical computing, providing scholars with an essential roadmap to navigate the quantum technology landscape. With its clear explanations, practical applications, and forward-looking perspectives, this book serves as an indispensable tool for unraveling quantum computing's mysteries and driving innovation into uncharted domains.

Essential Math for Data Science

Essential Math for Data Science
Author: Thomas Nield
Publisher: "O'Reilly Media, Inc."
Total Pages: 352
Release: 2022-05-26
Genre: Computers
ISBN: 1098102908

Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. Learn how to: Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance Manipulate vectors and matrices and perform matrix decomposition Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market