Essentials of Electronic Packaging

Essentials of Electronic Packaging
Author: Puligandla Viswanadham
Publisher: American Society of Mechanical Engineers
Total Pages: 0
Release: 2011
Genre: Technology & Engineering
ISBN: 9780791859667

ASME Press Book Series on Electronic Packaging. Series Editor: Dereje Agonafer. This book provides the basic essentials and fundamentals of electronic packaging technology. It introduces the language and terminology, as well as the basic building blocks of information processing technology such as: a) printed wiring boards and laminates, b) various types of components and packages, c) materials and processes, d) fundamentals of reliability and relevant reliability enhancement methods, and e) typical failures observed are described. A fully tested semiconductor device is the starting point for this text. Thus, no background in the semiconductor design or fabrication is assumed. The reader is exposed to the interaction and convergence of various disciplines such as chemistry, physics, materials science, metallurgy, process engineering in the fabrication of an electronic appliance. The reader is also made aware of the emerging trends in electronic packaging to prepare him or her for the near-term miniaturization and integration of technology trends.

Power Electronic Packaging

Power Electronic Packaging
Author: Yong Liu
Publisher: Springer Science & Business Media
Total Pages: 606
Release: 2012-02-15
Genre: Technology & Engineering
ISBN: 1461410533

Power Electronic Packaging presents an in-depth overview of power electronic packaging design, assembly,reliability and modeling. Since there is a drastic difference between IC fabrication and power electronic packaging, the book systematically introduces typical power electronic packaging design, assembly, reliability and failure analysis and material selection so readers can clearly understand each task's unique characteristics. Power electronic packaging is one of the fastest growing segments in the power electronic industry, due to the rapid growth of power integrated circuit (IC) fabrication, especially for applications like portable, consumer, home, computing and automotive electronics. This book also covers how advances in both semiconductor content and power advanced package design have helped cause advances in power device capability in recent years. The author extrapolates the most recent trends in the book's areas of focus to highlight where further improvement in materials and techniques can drive continued advancements, particularly in thermal management, usability, efficiency, reliability and overall cost of power semiconductor solutions.

The Electronic Packaging Handbook

The Electronic Packaging Handbook
Author: Glenn R. Blackwell
Publisher: CRC Press
Total Pages: 648
Release: 2017-12-19
Genre: Technology & Engineering
ISBN: 9781420049848

The packaging of electronic devices and systems represents a significant challenge for product designers and managers. Performance, efficiency, cost considerations, dealing with the newer IC packaging technologies, and EMI/RFI issues all come into play. Thermal considerations at both the device and the systems level are also necessary. The Electronic Packaging Handbook, a new volume in the Electrical Engineering Handbook Series, provides essential factual information on the design, manufacturing, and testing of electronic devices and systems. Co-published with the IEEE, this is an ideal resource for engineers and technicians involved in any aspect of design, production, testing or packaging of electronic products, regardless of whether they are commercial or industrial in nature. Topics addressed include design automation, new IC packaging technologies, materials, testing, and safety. Electronics packaging continues to include expanding and evolving topics and technologies, as the demand for smaller, faster, and lighter products continues without signs of abatement. These demands mean that individuals in each of the specialty areas involved in electronics packaging-such as electronic, mechanical, and thermal designers, and manufacturing and test engineers-are all interdependent on each others knowledge. The Electronic Packaging Handbook elucidates these specialty areas and helps individuals broaden their knowledge base in this ever-growing field.

Electronic Packaging

Electronic Packaging
Author: John H. Lau
Publisher: McGraw-Hill Professional Publishing
Total Pages: 0
Release: 1998
Genre: Electronic packaging
ISBN: 9780070371354

Here is the ultimate electronic packaging resource, in which luminaries from the four intertwined disciplines of packaging present a one-stop guide to the state of the art. An absolute necessity for anyone working in the field, this "how-to" reference covers all the newest technologies, including BGA, Flip Chip, and CSP.

Advanced Materials for Thermal Management of Electronic Packaging

Advanced Materials for Thermal Management of Electronic Packaging
Author: Xingcun Colin Tong
Publisher: Springer Science & Business Media
Total Pages: 633
Release: 2011-01-05
Genre: Technology & Engineering
ISBN: 1441977597

The need for advanced thermal management materials in electronic packaging has been widely recognized as thermal challenges become barriers to the electronic industry’s ability to provide continued improvements in device and system performance. With increased performance requirements for smaller, more capable, and more efficient electronic power devices, systems ranging from active electronically scanned radar arrays to web servers all require components that can dissipate heat efficiently. This requires that the materials have high capability of dissipating heat and maintaining compatibility with the die and electronic packaging. In response to critical needs, there have been revolutionary advances in thermal management materials and technologies for active and passive cooling that promise integrable and cost-effective thermal management solutions. This book meets the need for a comprehensive approach to advanced thermal management in electronic packaging, with coverage of the fundamentals of heat transfer, component design guidelines, materials selection and assessment, air, liquid, and thermoelectric cooling, characterization techniques and methodology, processing and manufacturing technology, balance between cost and performance, and application niches. The final chapter presents a roadmap and future perspective on developments in advanced thermal management materials for electronic packaging.

High Temperature Electronics

High Temperature Electronics
Author: F. Patrick McCluskey
Publisher: CRC Press
Total Pages: 354
Release: 1996-12-13
Genre: Technology & Engineering
ISBN: 9780849396236

The development of electronics that can operate at high temperatures has been identified as a critical technology for the next century. Increasingly, engineers will be called upon to design avionics, automotive, and geophysical electronic systems requiring components and packaging reliable to 200 °C and beyond. Until now, however, they have had no single resource on high temperature electronics to assist them. Such a resource is critically needed, since the design and manufacture of electronic components have now made it possible to design electronic systems that will operate reliably above the traditional temperature limit of 125 °C. However, successful system development efforts hinge on a firm understanding of the fundamentals of semiconductor physics and device processing, materials selection, package design, and thermal management, together with a knowledge of the intended application environments. High Temperature Electronics brings together this essential information and presents it for the first time in a unified way. Packaging and device engineers and technologists will find this book required reading for its coverage of the techniques and tradeoffs involved in materials selection, design, and thermal management and for its presentation of best design practices using actual fielded systems as examples. In addition, professors and students will find this book suitable for graduate-level courses because of its detailed level of explanation and its coverage of fundamental scientific concepts. Experts from the field of high temperature electronics have contributed to nine chapters covering topics ranging from semiconductor device selection to testing and final assembly.

Semiconductor Packaging

Semiconductor Packaging
Author: Andrea Chen
Publisher: CRC Press
Total Pages: 216
Release: 2016-04-19
Genre: Technology & Engineering
ISBN: 1439862079

In semiconductor manufacturing, understanding how various materials behave and interact is critical to making a reliable and robust semiconductor package. Semiconductor Packaging: Materials Interaction and Reliability provides a fundamental understanding of the underlying physical properties of the materials used in a semiconductor package. By tying together the disparate elements essential to a semiconductor package, the authors show how all the parts fit and work together to provide durable protection for the integrated circuit chip within as well as a means for the chip to communicate with the outside world. The text also covers packaging materials for MEMS, solar technology, and LEDs and explores future trends in semiconductor packages.

Fundamentals of Microsystems Packaging

Fundamentals of Microsystems Packaging
Author: Rao Tummala
Publisher: McGraw Hill Professional
Total Pages: 979
Release: 2001-05-08
Genre: Technology & Engineering
ISBN: 0071500596

LEARN ABOUT MICROSYSTEMS PACKAGING FROM THE GROUND UP Written by Rao Tummala, the field’s leading author, Fundamentals of Microsystems Packaging is the only book to cover the field from wafer to systems, including every major contributing technology. This rigorous and thorough introduction to electronic packaging technologies gives you a solid grounding in microelectronics, photonics, RF, packaging design, assembly, reliability, testing, and manufacturing and its relevance to both semiconductors and systems. You’ll find: *Full coverage of electrical, mechanical, chemical, and materials aspects of each technology *Easy-to-read schematics and block diagrams *Fundamental approaches to all system issues *Examples of all common configurations and technologies—wafer level packaging, single chip, multichip, RF, opto-electronic, microvia boards, thermal and others *Details on chip-to-board connections, sealing and encapsulation, and manufacturing processes *Basics of electrical and reliability testing

Microelectronics Packaging Handbook

Microelectronics Packaging Handbook
Author: R.R. Tummala
Publisher: Springer Science & Business Media
Total Pages: 1060
Release: 2013-11-27
Genre: Computers
ISBN: 1461560373

Electronics has become the largest industry, surpassing agriculture, auto, and heavy metal industries. It has become the industry of choice for a country to prosper, already having given rise to the phenomenal prosperity of Japan, Korea, Singapore, Hong Kong, and Ireland among others. At the current growth rate, total worldwide semiconductor sales will reach $300B by the year 2000. The key electronic technologies responsible for the growth of the industry include semiconductors, the packaging of semiconductors for systems use in auto, telecom, computer, consumer, aerospace, and medical industries, displays, magnetic, and optical storage as well as software and system technologies. There has been a paradigm shift, however, in these technologies, from mainframe and supercomputer applications at any cost, to consumer applications at approximately one-tenth the cost and size. Personal computers are a good example, going from $500IMIP when products were first introduced in 1981, to a projected $IIMIP within 10 years. Thin, light portable, user friendly and very low-cost are, therefore, the attributes of tomorrow's computing and communications systems. Electronic packaging is defined as interconnection, powering, cool ing, and protecting semiconductor chips for reliable systems. It is a key enabling technology achieving the requirements for reducing the size and cost at the system and product level.