Evolutionary Games and Population Dynamics

Evolutionary Games and Population Dynamics
Author: Josef Hofbauer
Publisher: Cambridge University Press
Total Pages: 356
Release: 1998-05-28
Genre: Mathematics
ISBN: 9780521625708

Every form of behaviour is shaped by trial and error. Such stepwise adaptation can occur through individual learning or through natural selection, the basis of evolution. Since the work of Maynard Smith and others, it has been realised how game theory can model this process. Evolutionary game theory replaces the static solutions of classical game theory by a dynamical approach centred not on the concept of rational players but on the population dynamics of behavioural programmes. In this book the authors investigate the nonlinear dynamics of the self-regulation of social and economic behaviour, and of the closely related interactions between species in ecological communities. Replicator equations describe how successful strategies spread and thereby create new conditions which can alter the basis of their success, i.e. to enable us to understand the strategic and genetic foundations of the endless chronicle of invasions and extinctions which punctuate evolution. In short, evolutionary game theory describes when to escalate a conflict, how to elicit cooperation, why to expect a balance of the sexes, and how to understand natural selection in mathematical terms.

Population Games and Evolutionary Dynamics

Population Games and Evolutionary Dynamics
Author: William H. Sandholm
Publisher: MIT Press
Total Pages: 618
Release: 2010-12-17
Genre: Business & Economics
ISBN: 0262195879

Evolutionary game theory studies the behaviour of large populations of strategically interacting agents & is used by economists to predict in settings where traditional assumptions about the rationality of agents & knowledge may be inapplicable.

Evolutionary Dynamics

Evolutionary Dynamics
Author: Martin A. Nowak
Publisher: Harvard University Press
Total Pages: 390
Release: 2006-09-29
Genre: Science
ISBN: 0674417755

At a time of unprecedented expansion in the life sciences, evolution is the one theory that transcends all of biology. Any observation of a living system must ultimately be interpreted in the context of its evolution. Evolutionary change is the consequence of mutation and natural selection, which are two concepts that can be described by mathematical equations. Evolutionary Dynamics is concerned with these equations of life. In this book, Martin A. Nowak draws on the languages of biology and mathematics to outline the mathematical principles according to which life evolves. His work introduces readers to the powerful yet simple laws that govern the evolution of living systems, no matter how complicated they might seem. Evolution has become a mathematical theory, Nowak suggests, and any idea of an evolutionary process or mechanism should be studied in the context of the mathematical equations of evolutionary dynamics. His book presents a range of analytical tools that can be used to this end: fitness landscapes, mutation matrices, genomic sequence space, random drift, quasispecies, replicators, the Prisoner’s Dilemma, games in finite and infinite populations, evolutionary graph theory, games on grids, evolutionary kaleidoscopes, fractals, and spatial chaos. Nowak then shows how evolutionary dynamics applies to critical real-world problems, including the progression of viral diseases such as AIDS, the virulence of infectious agents, the unpredictable mutations that lead to cancer, the evolution of altruism, and even the evolution of human language. His book makes a clear and compelling case for understanding every living system—and everything that arises as a consequence of living systems—in terms of evolutionary dynamics.

Evolutionary Game Theory

Evolutionary Game Theory
Author: Jörgen W. Weibull
Publisher: MIT Press
Total Pages: 292
Release: 1997
Genre: Business & Economics
ISBN: 9780262731218

Introduces current evolutionary game theory--where ideas from evolutionary biology and rationalistic economics meet--emphasizing the links between static and dynamic approaches and noncooperative game theory. This text introduces current evolutionary game theory--where ideas from evolutionary biology and rationalistic economics meet--emphasizing the links between static and dynamic approaches and noncooperative game theory. Much of the text is devoted to the key concepts of evolutionary stability and replicator dynamics. The former highlights the role of mutations and the latter the mechanisms of selection. Moreover, set-valued static and dynamic stability concepts, as well as processes of social evolution, are discussed. Separate background chapters are devoted to noncooperative game theory and the theory of ordinary differential equations. There are examples throughout as well as individual chapter summaries. Because evolutionary game theory is a fast-moving field that is itself branching out and rapidly evolving, Jörgen Weibull has judiciously focused on clarifying and explaining core elements of the theory in an up-to-date, comprehensive, and self-contained treatment. The result is a text for second-year graduate students in economic theory, other social sciences, and evolutionary biology. The book goes beyond filling the gap between texts by Maynard-Smith and Hofbauer and Sigmund that are currently being used in the field. Evolutionary Game Theory will also serve as an introduction for those embarking on research in this area as well as a reference for those already familiar with the field. Weibull provides an overview of the developments that have taken place in this branch of game theory, discusses the mathematical tools needed to understand the area, describes both the motivation and intuition for the concepts involved, and explains why and how it is relevant to economics.

Evolutionary Game Dynamics

Evolutionary Game Dynamics
Author: American Mathematical Society. Short Course
Publisher: American Mathematical Soc.
Total Pages: 186
Release: 2011-10-27
Genre: Mathematics
ISBN: 0821853260

This volume is based on lectures delivered at the 2011 AMS Short Course on Evolutionary Game Dynamics, held January 4-5, 2011 in New Orleans, Louisiana. Evolutionary game theory studies basic types of social interactions in populations of players. It combines the strategic viewpoint of classical game theory (independent rational players trying to outguess each other) with population dynamics (successful strategies increase their frequencies). A substantial part of the appeal of evolutionary game theory comes from its highly diverse applications such as social dilemmas, the evolution of language, or mating behaviour in animals. Moreover, its methods are becoming increasingly popular in computer science, engineering, and control theory. They help to design and control multi-agent systems, often with a large number of agents (for instance, when routing drivers over highway networks or data packets over the Internet). While these fields have traditionally used a top down approach by directly controlling the behaviour of each agent in the system, attention has recently turned to an indirect approach allowing the agents to function independently while providing incentives that lead them to behave in the desired way. Instead of the traditional assumption of equilibrium behaviour, researchers opt increasingly for the evolutionary paradigm and consider the dynamics of behaviour in populations of agents employing simple, myopic decision rules.

Evolution, Games, and God

Evolution, Games, and God
Author: Martin A. Nowak
Publisher: Harvard University Press
Total Pages: 398
Release: 2013-05-07
Genre: Science
ISBN: 0674075536

According to the reigning competition-driven model of evolution, selfish behaviors that maximize an organism’s reproductive potential offer a fitness advantage over self-sacrificing behaviors—rendering unselfish behavior for the sake of others a mystery that requires extra explanation. Evolution, Games, and God addresses this conundrum by exploring how cooperation, working alongside mutation and natural selection, plays a critical role in populations from microbes to human societies. Inheriting a tendency to cooperate, argue the contributors to this book, may be as beneficial as the self-preserving instincts usually thought to be decisive in evolutionary dynamics. Assembling experts in mathematical biology, history of science, psychology, philosophy, and theology, Martin Nowak and Sarah Coakley take an interdisciplinary approach to the terms “cooperation” and “altruism.” Using game theory, the authors elucidate mechanisms by which cooperation—a form of working together in which one individual benefits at the cost of another—arises through natural selection. They then examine altruism—cooperation which includes the sometimes conscious choice to act sacrificially for the collective good—as a key concept in scientific attempts to explain the origins of morality. Discoveries in cooperation go beyond the spread of genes in a population to include the spread of cultural transformations such as languages, ethics, and religious systems of meaning. The authors resist the presumption that theology and evolutionary theory are inevitably at odds. Rather, in rationally presenting a number of theological interpretations of the phenomena of cooperation and altruism, they find evolutionary explanation and theology to be strongly compatible.

Game-Theoretical Models in Biology

Game-Theoretical Models in Biology
Author: Mark Broom
Publisher: CRC Press
Total Pages: 522
Release: 2013-03-27
Genre: Mathematics
ISBN: 1439853215

Covering the major topics of evolutionary game theory, Game-Theoretical Models in Biology presents both abstract and practical mathematical models of real biological situations. It discusses the static aspects of game theory in a mathematically rigorous way that is appealing to mathematicians. In addition, the authors explore many applications of game theory to biology, making the text useful to biologists as well. The book describes a wide range of topics in evolutionary games, including matrix games, replicator dynamics, the hawk-dove game, and the prisoner’s dilemma. It covers the evolutionarily stable strategy, a key concept in biological games, and offers in-depth details of the mathematical models. Most chapters illustrate how to use MATLAB® to solve various games. Important biological phenomena, such as the sex ratio of so many species being close to a half, the evolution of cooperative behavior, and the existence of adornments (for example, the peacock’s tail), have been explained using ideas underpinned by game theoretical modeling. Suitable for readers studying and working at the interface of mathematics and the life sciences, this book shows how evolutionary game theory is used in the modeling of these diverse biological phenomena.

Shape

Shape
Author: Jordan Ellenberg
Publisher: Penguin
Total Pages: 481
Release: 2021-05-25
Genre: Mathematics
ISBN: 1984879065

An instant New York Times Bestseller! “Unreasonably entertaining . . . reveals how geometric thinking can allow for everything from fairer American elections to better pandemic planning.” —The New York Times From the New York Times-bestselling author of How Not to Be Wrong—himself a world-class geometer—a far-ranging exploration of the power of geometry, which turns out to help us think better about practically everything. How should a democracy choose its representatives? How can you stop a pandemic from sweeping the world? How do computers learn to play Go, and why is learning Go so much easier for them than learning to read a sentence? Can ancient Greek proportions predict the stock market? (Sorry, no.) What should your kids learn in school if they really want to learn to think? All these are questions about geometry. For real. If you're like most people, geometry is a sterile and dimly remembered exercise you gladly left behind in the dust of ninth grade, along with your braces and active romantic interest in pop singers. If you recall any of it, it's plodding through a series of miniscule steps only to prove some fact about triangles that was obvious to you in the first place. That's not geometry. Okay, it is geometry, but only a tiny part, which has as much to do with geometry in all its flush modern richness as conjugating a verb has to do with a great novel. Shape reveals the geometry underneath some of the most important scientific, political, and philosophical problems we face. Geometry asks: Where are things? Which things are near each other? How can you get from one thing to another thing? Those are important questions. The word "geometry"comes from the Greek for "measuring the world." If anything, that's an undersell. Geometry doesn't just measure the world—it explains it. Shape shows us how.

Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics

Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics
Author: Thomas L. Vincent
Publisher: Cambridge University Press
Total Pages: 0
Release: 2012-08-16
Genre: Science
ISBN: 9781107406513

All of life is a game, and evolution by natural selection is no exception. The evolutionary game theory developed in this 2005 book provides the tools necessary for understanding many of nature's mysteries, including co-evolution, speciation, extinction and the major biological questions regarding fit of form and function, diversity, procession, and the distribution and abundance of life. Mathematics for the evolutionary game are developed based on Darwin's postulates leading to the concept of a fitness generating function (G-function). G-function is a tool that simplifies notation and plays an important role developing Darwinian dynamics that drive natural selection. Natural selection may result in special outcomes such as the evolutionarily stable strategy (ESS). An ESS maximum principle is formulated and its graphical representation as an adaptive landscape illuminates concepts such as adaptation, Fisher's Fundamental Theorem of Natural Selection, and the nature of life's evolutionary game.