Fiber Technology for Fiber-Reinforced Composites

Fiber Technology for Fiber-Reinforced Composites
Author: M. Ozgur Seydibeyoglu
Publisher: Woodhead Publishing
Total Pages: 338
Release: 2017-05-22
Genre: Technology & Engineering
ISBN: 0081009933

Fiber Technology for Fiber-Reinforced Composites provides a detailed introduction to fiber reinforced composites, explaining the mechanics of fiber reinforced composites, along with information on the various fiber types, including manufacturing of fibers (starting from monomers and precursors), fiber spinning techniques, testing of fibers, and surface modification of fibers. As material technologies develop, composite materials are becoming more and more important in transportation, construction, electronics, sporting goods, the defense industry, and other areas of research. Many engineers working in industry and academics at universities are trying to manufacture composite materials using a limited number of fiber types with almost no information on fiber technology, fiber morphology, fiber properties, and fiber sizing agents. This book fills that gap in knowledge. - Unique in that it focuses on a broad range of different fiber types used in composites manufacturing - Contains contributions from leading experts working in both industry and academia - Provides comprehensive coverage on both natural and nanofibers

3D Fibre Reinforced Polymer Composites

3D Fibre Reinforced Polymer Composites
Author: L. Tong
Publisher: Elsevier
Total Pages: 255
Release: 2002-11-20
Genre: Technology & Engineering
ISBN: 0080525822

Fibre reinforced polymer (FRP) composites are used in almost every type of advanced engineering structure, with their usage ranging from aircraft, helicopters and spacecraft through to boats, ships and offshore platforms and to automobiles, sports goods, chemical processing equipment and civil infrastructure such as bridges and buildlings. The usage of FRP composites continues to grow at an impessive rate as these materials are used more in their existing markets and become established in relatively new markets such as biomedical devices and civil structures. A key factor driving the increased applications of composites over the recent years is the development of new advanced forms of FRP materials. This includes developments in high performance resin systems and new styles of reinforcement, such as carbon nanotubes and nanoparticles. This book provides an up-to-date account of the fabrication, mechanical properties, delamination resistance, impact tolerance and applications of 3D FRP composites. The book focuses on 3D composites made using the textile technologies of weaving, braiding, knitting and stiching as well as by z-pinning.

Fiber-Reinforced Composites

Fiber-Reinforced Composites
Author: P.K. Mallick
Publisher: CRC Press
Total Pages: 640
Release: 2007-11-19
Genre: Science
ISBN: 1420005987

This third edition of a bestseller offers a current perspective on the mechanics, characteristics, test methods, applications, manufacturing processes, and design aspects of composites. Highlighting materials such as nanocomposites and smart materials, the book contains new information on material substitution, cost analysis, nano- and natural fibers, fiber architecture, carbon-carbon composites, thermoplastics matrix composites, resin transfer molding, and test methods such as fiber bundle tests and interlaminar fracture measurements. It presents a new chapter on polymer-based nanocomposites. New examples and additional problems emphasize problem-solving skills used in real-world applications.

Fiber Reinforced Composites

Fiber Reinforced Composites
Author: Kuruvilla Joseph
Publisher: Woodhead Publishing
Total Pages: 908
Release: 2021-03-20
Genre: Technology & Engineering
ISBN: 0128210915

Polymer-based fibre-reinforced composites FRC's have now come out as a major class of structural materials being used or regarded as substituent's for metals in several critical components in space, automotive and other industries (marine, and sports goods) owing to their low density, strength-weight ratio, and fatigue strength. FRC's have several commercial as well as industrial applications ranging from aircraft, space, automotive, sporting goods, marine, and infrastructure. The above-mentioned applications of FRC's clearly reveal that FRC's have the potential to be used in a broad range of different engineering fields with the added advantages of low density, and resistance to corrosion compared to conventional metallic and ceramic composites. However, for scientists/researchers/R&D's to fabricate FRC's with such potential there should be careful and precise design followed by suitable process development based on properties like mechanical, physical, and thermal that are unique to each application. Hence the last few decades have witnessed considerable research on fibre reinforced composites. Fibre Reinforced Composites: Constituents, Compatibility, Perspectives and Applications presents a widespread all-inclusive review on fibre-reinforced composites ranging from the different types of processing techniques to chemical modification of the fibre surface to enhance the interfacial adhesion between the matrix and fibre and the structure-property relationship. It illustrates how high value composites can be produced by efficient and sustainable processing methods by selecting different constituents [fibres and resins]. Researchers in academia working in composites and accompanying areas [materials characterisation] and industrial manufacturers who need information on composite constituents and how they relate to each other for a certain application will find the book extremely useful when they need to make decisions about materials selection for their products. - Focuses on the different types of FRC's that are currently available (e.g. from polymeric matrices to metallic and ceramic matrices, from carbon fibre to different types of natural fibres and from short to long fibre reinforced), their processing techniques, characterization of different properties, and how to improve the interfacial adhesion between an incompatible fibre and matrix and their applications - Looks at crisis areas such as how to incorporate incompatible fibres and matrices together (e.g. Non-polar polypropylene matrix is not compatible with that of polar natural fibres and hence suitable surface modifications are required to make them compatible with each other) along with low cost processing methods, low density and high strength - Uncovers clarifications to both elementary and practical problems related to the fabrication of FRCs - Schematic representations depicting the interaction between different fibre types and matrices will be provided in some chapters

Optical Microscopy of Fiber-Reinforced Composites

Optical Microscopy of Fiber-Reinforced Composites
Author: Brian S. Hayes
Publisher: ASM International
Total Pages: 274
Release: 2010-01-01
Genre: Technology & Engineering
ISBN: 161503143X

Optical microscopy is one of the most valuable--but under utilized--tools for analyzing fiber reinforced polymer matrix composites. This hands-on instructional book covers everything: sample preparation, microscopic techniques, and applications. The power of optical microscopy to study the microstructure of these heterogeneous, anisotropic materials is illustrated with over 180 full color images.

Failure Criteria in Fibre Reinforced Polymer Composites

Failure Criteria in Fibre Reinforced Polymer Composites
Author: M. Hinton
Publisher: Elsevier
Total Pages: 1276
Release: 2004-08-31
Genre: Science
ISBN: 9780080444758

Fiber reinforced polymer composites are an extremely broad and versatile class of material.Their high strength coupled with lightweight leads to their use wherever structural efficiency is at a premium. Applications can be found in aircraft, process plants, sporting goods and military equipment. However they are heterogeneous in construction and antisotropic, which makes making strength prediction extremely difficult especially compared to that of a metal. This book brings together the results of a 12year worldwide failure exercise encompassing 19 theories in a single volume. Each contributor describes their own theory and employs it to solve 14 challenging problems. The accuracy of predictions and the performance of the theories are assessed and recommendations made on the uses of the theories in engineering design. All the necessary information is provided for the methodology to be readily employed for validating and benchmarking new theories as they emerge. Brings together 19 failure theories, with many application examples. Compares the leading failure theories with one another and with experimental data Failure to apply these theories could result in potentially unsafe designs or over design.

Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications

Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications
Author: Jiping Bai
Publisher: Woodhead Publishing
Total Pages: 844
Release: 2022-12-05
Genre: Technology & Engineering
ISBN: 0128203471

Advanced Fibre-reinforced Polymer (FRP) Composites for Structural Applications, Second Edition provides updates on new research that has been carried out on the use of FRP composites for structural applications. These include the further development of advanced FRP composites materials that achieve lighter and stronger FRP composites, how to enhance FRP integrated behavior through matrix modification, along with information on pretension treatments and intelligence technology. The development of new technology such as automated manufacturing and processing of fiber-reinforced polymer (FRP) composites have played a significant role in optimizing fabrication processing and matrix formation. In this new edition, all chapters have been brought fully up-to-date to take on the key aspects mentioned above. The book's chapters cover all areas relevant to advanced FRP composites, from the material itself, its manufacturing, properties, testing and applications in structural and civil engineering. Applications span from civil engineering, to buildings and the energy industry. - Covers all areas relevant to advanced FRP composites, from the material itself, its manufacturing, properties, testing and applications in structural engineering - Features new manufacturing techniques, such as automated fiber placement and 3D printing of composites - Includes various applications, such as prestressed-FRP, FRP made of short fibers, continuous structural health monitoring using advanced optical fiber Bragg grating (FBG), durability of FRP-strengthened structures, and the application of carbon nano-tubes or platelets for enhancing durability of FRP-bonded structures

Stress Analysis of Fiber-reinforced Composite Materials

Stress Analysis of Fiber-reinforced Composite Materials
Author: M. W. Hyer
Publisher: DEStech Publications, Inc
Total Pages: 718
Release: 2009
Genre: Technology & Engineering
ISBN: 193207886X

Updated and improved, Stress Analysis of Fiber-Reinforced Composite Materials, Hyer's work remains the definitive introduction to the use of mechanics to understand stresses in composites caused by deformations, loading, and temperature changes. In contrast to a materials science approach, Hyer emphasizes the micromechanics of stress and deformation for composite material analysis. The book provides invaluable analytic tools for students and engineers seeking to understand composite properties and failure limits. A key feature is a series of analytic problems continuing throughout the text, starting from relatively simple problems, which are built up step-by-step with accompanying calculations. The problem series uses the same material properties, so the impact of the elastic and thermal expansion properties for a single-layer of FR material on the stress, strains, elastic properties, thermal expansion and failure stress of cross-ply and angle-ply symmetric and unsymmetric laminates can be evaluated. The book shows how thermally induced stresses and strains due to curing, add to or subtract from those due to applied loads.Another important element, and one unique to this book, is an emphasis on the difference between specifying the applied loads, i.e., force and moment results, often the case in practice, versus specifying strains and curvatures and determining the subsequent stresses and force and moment results. This represents a fundamental distinction in solid mechanics.