Foundations of Probabilistic Programming

Foundations of Probabilistic Programming
Author: Gilles Barthe
Publisher: Cambridge University Press
Total Pages: 583
Release: 2020-12-03
Genre: Computers
ISBN: 110848851X

This book provides an overview of the theoretical underpinnings of modern probabilistic programming and presents applications in e.g., machine learning, security, and approximate computing. Comprehensive survey chapters make the material accessible to graduate students and non-experts. This title is also available as Open Access on Cambridge Core.

Foundations of Probabilistic Logic Programming

Foundations of Probabilistic Logic Programming
Author: Fabrizio Riguzzi
Publisher: CRC Press
Total Pages: 548
Release: 2023-07-07
Genre: Computers
ISBN: 1000923215

Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. This book aims at providing an overview of the field with a special emphasis on languages under the Distribution Semantics, one of the most influential approaches. The book presents the main ideas for semantics, inference, and learning and highlights connections between the methods. Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online. This 2nd edition aims at reporting the most exciting novelties in the field since the publication of the 1st edition. The semantics for hybrid programs with function symbols was placed on a sound footing. Probabilistic Answer Set Programming gained a lot of interest together with the studies on the complexity of inference. Algorithms for solving the MPE and MAP tasks are now available. Inference for hybrid programs has changed dramatically with the introduction of Weighted Model Integration. With respect to learning, the first approaches for neuro-symbolic integration have appeared together with algorithms for learning the structure for hybrid programs. Moreover, given the cost of learning PLPs, various works proposed language restrictions to speed up learning and improve its scaling.

Probabilistic Inductive Logic Programming

Probabilistic Inductive Logic Programming
Author: Luc De Raedt
Publisher: Springer
Total Pages: 348
Release: 2008-02-26
Genre: Computers
ISBN: 354078652X

This book provides an introduction to probabilistic inductive logic programming. It places emphasis on the methods based on logic programming principles and covers formalisms and systems, implementations and applications, as well as theory.

Abstraction, Refinement and Proof for Probabilistic Systems

Abstraction, Refinement and Proof for Probabilistic Systems
Author: Annabelle McIver
Publisher: Springer Science & Business Media
Total Pages: 412
Release: 2005
Genre: Computers
ISBN: 9780387401157

Provides an integrated coverage of random/probabilistic algorithms, assertion-based program reasoning, and refinement programming models, providing a focused survey on probabilistic program semantics. This book illustrates, by examples, the typical steps necessary to build a mathematical model of any programming paradigm.

Foundations of Probabilistic Logic Programming

Foundations of Probabilistic Logic Programming
Author: Fabrizio Riguzzi
Publisher: CRC Press
Total Pages: 422
Release: 2022-09-01
Genre: Computers
ISBN: 100079587X

Probabilistic Logic Programming extends Logic Programming by enabling the representation of uncertain information by means of probability theory. Probabilistic Logic Programming is at the intersection of two wider research fields: the integration of logic and probability and Probabilistic Programming.Logic enables the representation of complex relations among entities while probability theory is useful for model uncertainty over attributes and relations. Combining the two is a very active field of study.Probabilistic Programming extends programming languages with probabilistic primitives that can be used to write complex probabilistic models. Algorithms for the inference and learning tasks are then provided automatically by the system.Probabilistic Logic programming is at the same time a logic language, with its knowledge representation capabilities, and a Turing complete language, with its computation capabilities, thus providing the best of both worlds.Since its birth, the field of Probabilistic Logic Programming has seen a steady increase of activity, with many proposals for languages and algorithms for inference and learning. Foundations of Probabilistic Logic Programming aims at providing an overview of the field with a special emphasis on languages under the Distribution Semantics, one of the most influential approaches. The book presents the main ideas for semantics, inference, and learning and highlights connections between the methods.Many examples of the book include a link to a page of the web application http://cplint.eu where the code can be run online.

Good Thinking

Good Thinking
Author: Irving J. Good
Publisher: Courier Corporation
Total Pages: 353
Release: 2009-11-18
Genre: Mathematics
ISBN: 0486474380

These sparkling essays by a gifted thinker offer philosophical views on the roots of statistical interference. A pioneer in the early development of computing, Irving J. Good made fundamental contributions to the theory of Bayesian inference and was a key member of the team that broke the German Enigma code during World War II. Good maintains that a grasp of probability is essential to answering both practical and philosophical questions. This compilation of his most accessible works concentrates on philosophical rather than mathematical subjects, ranging from rational decisions, randomness, and the nature of probability to operational research, artificial intelligence, cognitive psychology, and chess. These twenty-three self-contained articles represent the author's work in a variety of fields but are unified by a consistently rational approach. Five closely related sections explore Bayesian rationality; probability; corroboration, hypothesis testing, and simplicity; information and surprise; and causality and explanation. A comprehensive index, abundant references, and a bibliography refer readers to classic and modern literature. Good's thought-provoking observations and memorable examples provide scientists, mathematicians, and historians of science with a coherent view of probability and its applications.

Practical Probabilistic Programming

Practical Probabilistic Programming
Author: Avi Pfeffer
Publisher: Simon and Schuster
Total Pages: 650
Release: 2016-03-29
Genre: Computers
ISBN: 1638352372

Summary Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In it, you'll learn how to use the PP paradigm to model application domains and then express those probabilistic models in code. Although PP can seem abstract, in this book you'll immediately work on practical examples, like using the Figaro language to build a spam filter and applying Bayesian and Markov networks, to diagnose computer system data problems and recover digital images. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology The data you accumulate about your customers, products, and website users can help you not only to interpret your past, it can also help you predict your future! Probabilistic programming uses code to draw probabilistic inferences from data. By applying specialized algorithms, your programs assign degrees of probability to conclusions. This means you can forecast future events like sales trends, computer system failures, experimental outcomes, and many other critical concerns. About the Book Practical Probabilistic Programming introduces the working programmer to probabilistic programming. In this book, you’ll immediately work on practical examples like building a spam filter, diagnosing computer system data problems, and recovering digital images. You’ll discover probabilistic inference, where algorithms help make extended predictions about issues like social media usage. Along the way, you’ll learn to use functional-style programming for text analysis, object-oriented models to predict social phenomena like the spread of tweets, and open universe models to gauge real-life social media usage. The book also has chapters on how probabilistic models can help in decision making and modeling of dynamic systems. What's Inside Introduction to probabilistic modeling Writing probabilistic programs in Figaro Building Bayesian networks Predicting product lifecycles Decision-making algorithms About the Reader This book assumes no prior exposure to probabilistic programming. Knowledge of Scala is helpful. About the Author Avi Pfeffer is the principal developer of the Figaro language for probabilistic programming. Table of Contents PART 1 INTRODUCING PROBABILISTIC PROGRAMMING AND FIGARO Probabilistic programming in a nutshell A quick Figaro tutorial Creating a probabilistic programming application PART 2 WRITING PROBABILISTIC PROGRAMS Probabilistic models and probabilistic programs Modeling dependencies with Bayesian and Markov networks Using Scala and Figaro collections to build up models Object-oriented probabilistic modeling Modeling dynamic systems PART 3 INFERENCE The three rules of probabilistic inference Factored inference algorithms Sampling algorithms Solving other inference tasks Dynamic reasoning and parameter learning

Logic with a Probability Semantics

Logic with a Probability Semantics
Author: Theodore Hailperin
Publisher: Rowman & Littlefield
Total Pages: 124
Release: 2011
Genre: Mathematics
ISBN: 1611460107

The present study is an extension of the topic introduced in Dr. Hailperin's Sentential Probability Logic, where the usual true-false semantics for logic is replaced with one based more on probability, and where values ranging from 0 to 1 are subject to probability axioms. Moreover, as the word "sentential" in the title of that work indicates, the language there under consideration was limited to sentences constructed from atomic (not inner logical components) sentences, by use of sentential connectives ("no," "and," "or," etc.) but not including quantifiers ("for all," "there is"). An initial introduction presents an overview of the book. In chapter one, Halperin presents a summary of results from his earlier book, some of which extends into this work. It also contains a novel treatment of the problem of combining evidence: how does one combine two items of interest for a conclusion-each of which separately impart a probability for the conclusion-so as to have a probability for the conclusion basedon taking both of the two items of interest as evidence? Chapter two enlarges the Probability Logic from the first chapter in two respects: the language now includes quantifiers ("for all," and "there is") whose variables range over atomic sentences, notentities as with standard quantifier logic. (Hence its designation: ontological neutral logic.) A set of axioms for this logic is presented. A new sentential notion-the suppositional-in essence due to Thomas Bayes, is adjoined to this logic that later becomes the basis for creating a conditional probability logic. Chapter three opens with a set of four postulates for probability on ontologically neutral quantifier language. Many properties are derived and a fundamental theorem is proved, namely, for anyprobability model (assignment of probability values to all atomic sentences of the language) there will be a unique extension of the probability values to all closed sentences of the language. The chapter concludes by showing the Borel's early denumerableprobability concept (1909) can be justified by its being, in essence, close to Hailperin's probability result applied to denumerable language. The final chapter introduces the notion of conditional-probability to a language having quantifiers of the kind