Fracture Failure Analysis of Fiber Reinforced Polymer Matrix Composites

Fracture Failure Analysis of Fiber Reinforced Polymer Matrix Composites
Author: Sanjay Mavinkere Rangappa
Publisher: Springer Nature
Total Pages: 212
Release: 2021-04-19
Genre: Technology & Engineering
ISBN: 9811606420

This book presents a unified approach to fracture behavior of natural and synthetic fiber-reinforced polymer composites on the basis of fiber orientation, the addition of fillers, characterization, properties and applications. In addition, the book contains an extensive survey of recent improvements in the research and development of fracture analysis of FRP composites that are used to make higher fracture toughness composites in various applications.The FRP composites are an emerging area in polymer science with many structural applications. The rise in materials failure by fracture has forced scientists and researchers to develop new higher strength materials for obtaining higher fracture toughness. Therefore, further knowledge and insight into the different modes of fracture behavior of FRP composites are critical to expanding the range of their application.

Failure Analysis and Fractography of Polymer Composites

Failure Analysis and Fractography of Polymer Composites
Author: Emile Greenhalgh
Publisher: Elsevier
Total Pages: 608
Release: 2009-09-28
Genre: Technology & Engineering
ISBN: 1845696816

The growing use of polymer composites is leading to increasing demand for fractographic expertise. Fractography is the study of fracture surface morphologies and it gives an insight into damage and failure mechanisms, underpinning the development of physically-based failure criteria. In composites research it provides a crucial link between predictive models and experimental observations. Finally, it is vital for post-mortem analysis of failed or crashed polymer composite components, the findings of which can be used to optimise future designs.Failure analysis and fractography of polymer composites covers the following topics: methodology and tools for failure analysis; fibre-dominated failures; delamination-dominated failures; fatigue failures; the influence of fibre architecture on failure; types of defect and damage; case studies of failures due to overload and design deficiencies; case studies of failures due to material and manufacturing defects; and case studies of failures due to in-service factors.With its distinguished author, Failure analysis and fractography of polymer composites is a standard reference text for researchers working on damage and failure mechanisms in composites, engineers characterising manufacturing and in-service defects in composite structures, and investigators undertaking post-mortem failure analysis of components. The book is aimed at both academic and industrial users, specifically final year and postgraduate engineering and materials students researching composites and industry designers and engineers in aerospace, civil, marine, power and transport applications. - Examines the study of fracture surface morphologies in uderstanding composite structural behaviour - Discusses composites research and post-modern analysis of failed or crashed polymer composite components - Provides an overview of damage mechanisms, types of defect and failure criteria

Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures

Engineering Mechanics of Fibre Reinforced Polymers and Composite Structures
Author: Jan A. H. Hult
Publisher: Springer Science & Business Media
Total Pages: 326
Release: 1994-12-15
Genre: Computers
ISBN: 9783211826522

The book aims at giving an overview of current methods in engineering mechanics of FRP components and structures as well as hybrid components and structures. Main emphasis is on basic micro and macro mechanics of laminates. Long as well as short fibre composites are studied, and criteria for different kinds of rupture are treated. Micromechanical considerations for material characterization and mechanisms of static ductile and brittle rupture are studied, as well as FRP structures under thermal and dynamic loading programs. Optimum design and manufacture situations are described as well. The book makes designers familiar with the opportunities and limitations of modern high quality fibre composites. Practical engineering applications of the described analytical and numerical methods are also presented.

Design and Manufacture of Fibre-Reinforced Composites

Design and Manufacture of Fibre-Reinforced Composites
Author: Wayne Hall
Publisher: Springer Nature
Total Pages: 149
Release: 2021-08-05
Genre: Technology & Engineering
ISBN: 3030788075

This book presents an introduction to the design and manufacture of fibre-reinforced composites. The mechanical properties of unidirectional composites are considered in a structural design context. The use of woven and random fibres is also addressed. The accuracy of design estimates for unidirectional composites is benchmarked against test data, and the relevance of a factor of safety (FoS) is established. The importance of prototype testing is emphasised. This book illustrates how to make a fibre-reinforced composite. Wet layup, vacuum bagging and prepreg moulding are covered in detail. Some guidance on mould design and construction is also provided. Finally, an introduction to the manufacture of composite tubes is presented. Wherever possible, design and make examples are used to illustrate the content. Tutorial questions and problems are included at the end of each chapter. The reader is encouraged to use these questions and problems to assess their own level of understanding of the content.

Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites

Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites
Author: Mohammad Jawaid
Publisher: Woodhead Publishing
Total Pages: 0
Release: 2018-11-29
Genre: Technology & Engineering
ISBN: 9780081022917

Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites provides detailed information on failure analysis, mechanical and physical properties, structural health monitoring, durability and life prediction, modelling of damage processes of natural fiber, synthetic fibers, and natural/natural, and natural/synthetic fiber hybrid composites. It provides a comprehensive review of both established and promising new technologies currently under development in the emerging area of structural health monitoring in aerospace, construction and automotive structures. In addition, it describes SHM methods and sensors related to specific composites and how advantages and limitations of various sensors and methods can help make informed choices. Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.

Stress Analysis of Fiber-reinforced Composite Materials

Stress Analysis of Fiber-reinforced Composite Materials
Author: M. W. Hyer
Publisher: DEStech Publications, Inc
Total Pages: 718
Release: 2009
Genre: Technology & Engineering
ISBN: 193207886X

Updated and improved, Stress Analysis of Fiber-Reinforced Composite Materials, Hyer's work remains the definitive introduction to the use of mechanics to understand stresses in composites caused by deformations, loading, and temperature changes. In contrast to a materials science approach, Hyer emphasizes the micromechanics of stress and deformation for composite material analysis. The book provides invaluable analytic tools for students and engineers seeking to understand composite properties and failure limits. A key feature is a series of analytic problems continuing throughout the text, starting from relatively simple problems, which are built up step-by-step with accompanying calculations. The problem series uses the same material properties, so the impact of the elastic and thermal expansion properties for a single-layer of FR material on the stress, strains, elastic properties, thermal expansion and failure stress of cross-ply and angle-ply symmetric and unsymmetric laminates can be evaluated. The book shows how thermally induced stresses and strains due to curing, add to or subtract from those due to applied loads.Another important element, and one unique to this book, is an emphasis on the difference between specifying the applied loads, i.e., force and moment results, often the case in practice, versus specifying strains and curvatures and determining the subsequent stresses and force and moment results. This represents a fundamental distinction in solid mechanics.

Long-Term Durability of Polymeric Matrix Composites

Long-Term Durability of Polymeric Matrix Composites
Author: Kishore V. Pochiraju
Publisher: Springer Science & Business Media
Total Pages: 681
Release: 2011-09-25
Genre: Technology & Engineering
ISBN: 1441993088

Long-Term Durability of Polymeric Matrix Composites presents a comprehensive knowledge-set of matrix, fiber and interphase behavior under long-term aging conditions, theoretical modeling and experimental methods. This book covers long-term constituent behavior, predictive methodologies, experimental validation and design practice. Readers will also find a discussion of various applications, including aging air craft structures, aging civil infrastructure, in addition to engines and high temperature applications.

Fractography in Failure Analysis of Polymers

Fractography in Failure Analysis of Polymers
Author: Michael D. Hayes
Publisher: William Andrew
Total Pages: 253
Release: 2015-05-08
Genre: Technology & Engineering
ISBN: 0323297994

Fractography in Failure Analysis of Polymers provides a practical guide to the science of fractography and its application in the failure analysis of plastic components. In addition to a brief background on the theory of fractography, the authors discuss the various fractographic tools and techniques used to identify key fracture characteristics. Case studies are included for a wide range of polymer types, applications, and failure modes, as well as best practice guidelines enabling engineers to apply these lessons to their own work. Detailed images and their appropriate context are presented for reference in failure investigations. This text is vital for engineers who must determine the root causes of failure when it occurs, helping them further study the ramifications of product liability claims, environmental concerns, and brand image. - Presents a comprehensive guide to applied fractography, enabling improved reliability and longevity of plastic parts and products - Includes case studies that demonstrate material selection decisions and how to reduce failure rates - Provides best practices on how to analyze the cause of material failures, along with guidelines on improving design and manufacturing decisions