Functional Nanostructures and Metamaterials for Superconducting Spintronics

Functional Nanostructures and Metamaterials for Superconducting Spintronics
Author: Anatolie Sidorenko
Publisher: Springer
Total Pages: 279
Release: 2018-06-20
Genre: Science
ISBN: 3319904817

This book demonstrates how the new phenomena in the nanometer scale serve as the basis for the invention and development of novel nanoelectronic devices and how they are used for engineering nanostructures and metamaterials with unusual properties. It discusses topics such as superconducting spin-valve effect and thermal spin transport, which are important for developing spintronics; fabrication of nanostructures from antagonistic materials like ferromagnets and superconductors, which lead to a novel non-conventional FFLO-superconducting state; calculations of functional nanostructures with an exotic triplet superconductivity, which are the basis for novel nanoelectronic devices, such as superconducting spin valve, thin-film superconducting quantum interference devices (SQUIDs) and memory-elements (MRAM). Starting with theoretical chapters about triplet superconductivity, the book then introduces new ideas and approaches in the fundamentals of superconducting electronics. It presents various quantum devices based on the new theoretical approaches, demonstrating the enormous potential of the electronics of 21st century - spintronics. The book is useful for a broad audience, including researchers, engineers, PhD graduates, students and others wanting to gain insights into the frontiers of nanoscience.

Detectors and Sources for THz and IR

Detectors and Sources for THz and IR
Author: Fedir F. Sizov
Publisher: Materials Research Forum LLC
Total Pages: 330
Release: 2020-05-05
Genre: Technology & Engineering
ISBN: 1644900742

IR and THz technologies are widely used in security screening and surveillance, astronomy, spectroscopy, biomedicine, food and package inspection, detection of concealed weapons, vision through camouflage, etc. There are increasing demands for the fast transmission of large amounts of data. THz radiation penetrates dielectric materials like plastics, ceramics or cardboard allowing contact-free testing. Medical imaging technologies can provide guidance for surgeons in delimiting the margins of tumors, help clinicians to visualize diseased areas, etc. Keywords: THz and IR Detectors, THz and IR Sources, Superconducting Photon Detectors, Superconducting THz Detectors, Graphene-based Detectors, THz Sensors with Metamaterials, Photoconductive Antenna Detectors, Imaging, Communication, Spectroscopy, Sensing, Security Screening, Surveillance, Astronomy, Biomedicine, Food Inspection, Package Inspection, Concealed Weapons Detection, Transmission of Large Amounts of Data, Non-destructive Testing, Contact-free Testing, Medical Imaging Technologies.

Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition

Functional Nanostructures Fabricated by Focused Electron/Ion Beam Induced Deposition
Author: Rosa Córdoba Castillo
Publisher: Springer Science & Business Media
Total Pages: 157
Release: 2013-10-08
Genre: Science
ISBN: 3319020811

This thesis constitutes a detailed study of functional nanostructures (ferromagnetic, superconducting, metallic and semiconducting) fabricated by focused electron/ion beam induced deposition techniques. The nanostructures were grown using different precursor materials such as Co2(CO)8, Fe2(CO)9, W(CO)6, (CH3)3Pt(CpCH3) and were characterized by a wide range of techniques. This work reports results obtained for the morphology, the microstructure, the composition, the electrical transport mechanism, magnetic and superconducting properties of nanostructures. The results offers exciting prospects in a wide range of applications in nanotechnology and condensed matter physics.

Spintronics

Spintronics
Author: Claudia Felser
Publisher: Springer Science & Business Media
Total Pages: 379
Release: 2013-03-20
Genre: Technology & Engineering
ISBN: 9048138329

Spintronics is an emerging technology exploiting the spin degree of freedom and has proved to be very promising for new types of fast electronic devices. Amongst the anticipated advantages of spintronics technologies, researchers have identified the non-volatile storage of data with high density and low energy consumption as particularly relevant. This monograph examines the concept of half-metallic compounds perspectives to obtain novel solutions and discusses several oxides such as perovskites, double perovskites and CrO2 as well as Heusler compounds. Such materials can be designed and made with high spin polarization and, especially in the case of Heusler compounds, many material-related problems present in current-day 3d metal systems, can be overcome. Spintronics: From Materials to Devices provides an insight into the current research on Heusler compounds and offers a general understanding of structure–property relationships, including the influence of disorder and correlations on the electronic structure and interfaces. Spintronics devices such as magnetic tunnel junctions (MTJs) and giant magnetoresistance (GMR) devices, with current perpendicular to the plane, in which Co2 based Heusler compounds are used as new electrode materials, are also introduced. From materials design by theoretical methods and the preparation and properties of the materials to the production of thin films and devices, this monograph represents a valuable guide to both novices and experts in the fields of Chemistry, Physics, and Materials Science.

Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing

Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing
Author: Jayasimha Atulasimha
Publisher: John Wiley & Sons
Total Pages: 356
Release: 2016-03-07
Genre: Technology & Engineering
ISBN: 1118869265

Nanomagnetic and spintronic computing devices are strong contenders for future replacements of CMOS. This is an important and rapidly evolving area with the semiconductor industry investing significantly in the study of nanomagnetic phenomena and in developing strategies to pinpoint and regulate nanomagnetic reliably with a high degree of energy efficiency. This timely book explores the recent and on-going research into nanomagnetic-based technology. Key features: Detailed background material and comprehensive descriptions of the current state-of-the-art research on each topic. Focuses on direct applications to devices that have potential to replace CMOS devices for computing applications such as memory, logic and higher order information processing. Discusses spin-based devices where the spin degree of freedom of charge carriers are exploited for device operation and ultimately information processing. Describes magnet switching methodologies to minimize energy dissipation. Comprehensive bibliographies included for each chapter enabling readers to conduct further research in this field. Written by internationally recognized experts, this book provides an overview of a rapidly burgeoning field for electronic device engineers, field-based applied physicists, material scientists and nanotechnologists. Furthermore, its clear and concise form equips readers with the basic understanding required to comprehend the present stage of development and to be able to contribute to future development. Nanomagnetic and Spintronic Devices for Energy-Efficient Memory and Computing is also an indispensable resource for students and researchers interested in computer hardware, device physics and circuits design.

Graphene in Spintronics

Graphene in Spintronics
Author: Junichiro Inoue
Publisher: CRC Press
Total Pages: 296
Release: 2016-05-25
Genre: Science
ISBN: 9814669571

The discovery and fabrication of new materials have opened the gate for new research fields in science and technology. The novel method of fabricating graphene, a purely 2D carbon lattice, and the discovery of the phenomenon of giant magnetoresistance (GMR) in magnetic multilayers are not exceptions. The latter has brought about the creation of the

Nanomagnetism and Spintronics

Nanomagnetism and Spintronics
Author: Farzad Nasirpouri
Publisher: World Scientific
Total Pages: 401
Release: 2011
Genre: Science
ISBN: 9814273058

Nanomagnetism and spintronics are two close subfields of nanoscience, explaining the effect of substantial magnetic properties of matter when the materials fabrication is realized at a comparable length size. Nanomagnetism deals with the magnetic phenomena specific to the structures having dimensions in the submicron range. The fact that the electronic transport properties of materials are dependent on the magnetic properties' artificial nanostructures, i.e., giant magnetoresistance (GMR) or tunneling magnetoresistance (TMR), has revolutionized spintronics science and technology. This book explains the concepts of nanomagnetism and spintronics by viewing the most recent research works from internationally distinguished research groups. Placing special emphasis on crucial fundamental and technical aspects of nanomagnetism and spintronics, it serves as a one-stop reference for universities offering postgraduate programs in nanotechnology or related disciplines. This unique book deals with all three stages required for conducting research in nanomagnetism and spintronics including fabrication, characterization and applications of nanomagnetic and spintronics materials, providing general concepts and an insightful overview of this subject for research students and scientists from different backgrounds investigating the multidisciplinary area of nanotechnology.

Theoretical Physics and Astrophysics

Theoretical Physics and Astrophysics
Author: V.L. Ginzburg
Publisher: Elsevier
Total Pages: 471
Release: 2013-10-22
Genre: Science
ISBN: 1483293181

The aim of this book is to present, on the one hand various topics in theoretical physics in depth - especially topics related to electrodynamics - and on the other hand to show how these topics find applications in various aspects of astrophysics. The first text on theoretical physics and astrophysical applications, it covers many recent advances including those in X-ray, &ggr;-ray and radio-astronomy, with comprehensive coverage of the literature