Functional Polymers in Food Science

Functional Polymers in Food Science
Author: Giuseppe Cirillo
Publisher: John Wiley & Sons
Total Pages: 354
Release: 2015-03-18
Genre: Technology & Engineering
ISBN: 1119108578

Polymers are an important part in everyday life; products made from polymers range from sophisticated articles, such as biomaterials, to aerospace materials. One of the reasons for the great popularity exhibited by polymers is their ease of processing. Polymer properties can be tailored to meet specific needs by varying the “atomic composition” of the repeat structure, by varying molecular weight and by the incorporation (via covalent and non-covalent interactions) of an enormous range of compounds to impart specific activities. In food science, the use of polymeric materials is widely explored, from both an engineering and a nutraceutical point of view. Regarding the engineering application, researchers have discovered the most suitable materials for intelligent packaging which preserves the food quality and prolongs the shelf-life of the products. Furthermore, in agriculture, specific functionalized polymers are used to increase the efficiency of treatments and reduce the environmental pollution. In the nutraceutical field, because consumers are increasingly conscious of the relationship between diet and health, the consumption of high quality foods has been growing continuously. Different compounds (e.g. high quality proteins, lipids and polysaccharides) are well known to contribute to the enhancement of human health by different mechanisms, reducing the risk of cardiovascular disease, coronary disease, and hypertension. This second volume focuses on the importance of polymers and functional food and in food processing

Functional Polymers in Food Science

Functional Polymers in Food Science
Author: Giuseppe Cirillo
Publisher: John Wiley & Sons
Total Pages: 322
Release: 2015-03-10
Genre: Technology & Engineering
ISBN: 1119109779

Polymers are an important part in everyday life; products made from polymers range from sophisticated articles, such as biomaterials, to aerospace materials. One of the reasons for the great popularity exhibited by polymers is their ease of processing. Polymer properties can be tailored to meet specific needs by varying the "atomic composition" of the repeat structure, by varying molecular weight and by the incorporation (via covalent and non-covalent interactions) of an enormous range of compounds to impart specific activities. In food science, the use of polymeric materials is widely explored, from both an engineering and a nutraceutical point of view. Regarding the engineering application, researchers have discovered the most suitable materials for intelligent packaging which preserves the food quality and prolongs the shelf-life of the products. Furthermore, in agriculture, specific functionalized polymers are used to increase the efficiency of treatments and reduce the environmental pollution. In the nutraceutical field, because consumers are increasingly conscious of the relationship between diet and health, the consumption of high quality foods has been growing continuously. Different compounds (e.g. high quality proteins, lipids and polysaccharides) are well known to contribute to the enhancement of human health by different mechanisms, reducing the risk of cardiovascular disease, coronary disease, and hypertension. This first volume, of this two volume book, concerns the application of polymers in food packaging.

Reactive and Functional Polymers Volume One

Reactive and Functional Polymers Volume One
Author: Tomy J. Gutiérrez
Publisher: Springer Nature
Total Pages: 434
Release: 2020-08-25
Genre: Technology & Engineering
ISBN: 3030434036

Reactive and functional polymers are manufactured with the aim of improving the performance of unmodified polymers or providing functionality for different applications. These polymers are created mainly through chemical reactions, but there are other important modifications that can be carried out by physical alterations in order to obtain reactive and functional polymers. This volume presents a comprehensive analysis of these reactive and functional polymers. Reactive and Functional Polymers Volume One provides the principles and foundations for the design, development, manufacture and processing of reactive and functional polymers based primarily on biopolymers, polyesters and polyurenthanes. The text provides an in-depth review of updated sources on reactive resins and silicones. In this book, world-renowned researchers have participated, including Dr. Runcang Sun (Associate editor for the journal ‘Carbohydrate Polymers’). With its comprehensive scope and up-to-date coverage of issues and trends in Reactive and Functional Polymers, this is an outstanding book for students, professors, researchers and industrialists working in the field of polymers and plastic materials.

Functional Properties of Food Macromolecules

Functional Properties of Food Macromolecules
Author: S.E. Hill
Publisher: Springer Science & Business Media
Total Pages: 374
Release: 1998-08-31
Genre: Science
ISBN: 9780751404210

This edition updates the substantial progress that has occurred since 1988 in many aspects of understanding, measuring and utilizing functional macromolecules.

Renewable Resources for Functional Polymers and Biomaterials

Renewable Resources for Functional Polymers and Biomaterials
Author: Peter Williams
Publisher: Royal Society of Chemistry
Total Pages: 386
Release: 2015-11-09
Genre: Science
ISBN: 1782625844

This book details polysaccharides and other important biomacromolecules covering their source, production, structures, properties, and current and potential application in the fields of biotechnology and medicine. It includes a systematic discussion on the general strategies of isolation, separation and characterization of polysaccharides and proteins. Subsequent chapters are devoted to polysaccharides obtained from various sources, including botanical, algal, animal and microbial. In the area of botanical polysaccharides, separate chapters are devoted to the sources, structure, properties and medical applications of cellulose and its derivatives, starch and its derivatives, pectins, and exudate gums, notably gum arabic. Another chapter discusses the potential of hemicelluloses (xylans and xylan derivatives) as a new source of functional biopolymers for biomedical and industrial applications. The algal polysaccharide, alginate, has significant application in food, pharmaceuticals and the medical field, all of which are reviewed in a separate chapter. Polysaccharides of animal origin are included with separate chapters on the sources, production, biocompatibility, biodegradability and biomedical applications of chitin (chitosan) and hyaluronan. With the increasing knowledge and applications of genetic engineering there is also an introduction in the book to nucleic acid polymers, the genome research and genetic engineering. Proteins and protein conjugates are covered, with one chapter providing a general review of structural glycoproteins, fibronectin and laminin, together with their role in the promotion of cell adhesion in vascular grafts, implants and tissue engineering. Another chapter discusses general aspects of a number of industrial proteins, including casein, caseinates, whey protein, gluten and soy proteins, with emphasis on their medical applications, and with reference to the potential of bacterial proteins. Another natural polymer resource, microbial polyesters, although small compared with polysaccharides and proteins, is also gaining increasing interest in biomedical technology and other industrial sectors. One chapter, therefore, is devoted to microbial polyesters, with comprehensive coverage of their biosynthesis, properties, enzymic degradation and applications. By dealing with biopolymers at the molecular level, the book is aimed at the biomedical and wider materials science communities and provides an advanced overview of biopolymers at the graduate and postgraduate level. In addition it will appeal to both academic and industrial life scientists who are involved in research and development activities in the medical and biotechnology field.

Biopolymers for Food Design

Biopolymers for Food Design
Author: Alexandru Mihai Grumezescu
Publisher: Academic Press
Total Pages: 540
Release: 2018-04-03
Genre: Technology & Engineering
ISBN: 0128115017

Biopolymers for Food Design, Volume 20 in the Handbook of Bioengineering series, describes how biopolymers have made a major impact in the food industry, from food design, to food control and safety. Biopolymers can be used in the development of novel nutritional alternatives, to replace difficult to obtain food products, or for foods inaccessible or inappropriate for a particular population (i.e. allergic to specific components). In addition, some polymers can be used as functional ingredients, and can also represent efficient scaffolds for food ingredients with therapeutic values. This valuable reference is ideal for those looking for new solutions for the food industry. - Presents common biopolymers and their applications in food bioengineering, from food design, to control and safety - Identifies how the use of certain biopolymers can result in faster production time and reduced costs - Includes cutting-edge technologies used in research for food design and other food-related applications - Discusses the use of biopolymers in food packaging, shelf-life extension, and the creation of novel food products

Multifunctional and Nanoreinforced Polymers for Food Packaging

Multifunctional and Nanoreinforced Polymers for Food Packaging
Author: José-María Lagarón
Publisher: Elsevier
Total Pages: 729
Release: 2011-05-09
Genre: Technology & Engineering
ISBN: 0857092782

Recent developments in multifunctional and nanoreinforced polymers have provided the opportunity to produce high barrier, active and intelligent food packaging which can help ensure, or even enhance, the quality and safety of packaged foods. Multifunctional and nanoreinforced polymers for food packaging provides a comprehensive review of novel polymers and polymer nanocomposites for use in food packaging.After an introductory chapter, Part one discusses nanofillers for plastics in food packaging. Chapters explore the use of passive and active nanoclays and hidrotalcites, cellulose nanofillers and electrospun nanofibers and nanocapsules. Part two investigates high barrier plastics for food packaging. Chapters assess the transport and high barrier properties of food packaging polymers such as ethylene-norbornene copolymers and advanced single-site polyolefins, nylon-MXD6 resins and ethylene-vinyl alcohol copolymers before going on to explore recent advances in various plastic packaging technologies such as modified atmosphere packaging (MAP), nanoscale inorganic coatings and functional barriers against migration. Part three reviews active and bioactive plastics in food packaging. Chapters investigate silver-based antimicrobial polymers, the incorporation of antimicrobial/antioxidant natural extracts into polymeric films, and biaoctive food packaging strategies. Part four examines nanotechnology in sustainable plastics with chapters examining the food packaging applications of polylactic acid (PLA) nanocomposites, polyhydroxyalkanoates (PHAs), starch-based polymers, chitosan and carragenan polysaccharides and protein-based resins for packaging gluten (WG)-based materials. The final chapter presents the safety and regulatory aspects of plastics as food packaging materials.With its distinguished editor and international team of expert contributors Multifunctional and nanoreinforced polymers for food packaging proves a valuable resource for researchers in packaging in the food industry and polymer scientists interested in multifunctional and nanoreinforced materials. - Provides a comprehensive review of novel polymers and polymer nanocomposites for use in food packaging - Discusses nanofillers for plastics in food packaging including the use of passive and active nanoclays and hidrotalcites and electrospun nanofibers - Investigates high barrier plastics for food packaging assessing recent advances in various plastic packaging technologies such as modified atmosphere packaging (MAP)

Polymers for Food Applications

Polymers for Food Applications
Author: Tomy J. Gutiérrez
Publisher: Springer
Total Pages: 817
Release: 2018-08-09
Genre: Technology & Engineering
ISBN: 3319946250

This book presents an exhaustive review on the use of polymers for food applications. Polymer-based systems for food applications such as: films, foams, nano- and micro-encapsulated, emulsions, hydrogels, prebiotics, 3D food printing, edible polymers for the development of foods for people with special feeding regimes, sensors, among others, have been analyzed in this work.

Novel Technologies in Food Science

Novel Technologies in Food Science
Author: Navnidhi Chhikara
Publisher: John Wiley & Sons
Total Pages: 660
Release: 2023-02-07
Genre: Technology & Engineering
ISBN: 1119775574

NOVEL TECHNOLOGIES IN FOOD SCIENCE Presenting cutting-edge information on new and emerging food engineering processes, Novel Technologies in Food Science, the newest volume in the ground-breaking new series, “Bioprocessing in Food Science,” is an essential reference on the modelling, quality, safety, and technologies associated with food processing operations today. Novel Technologies in Food Science, the latest volume in the series, “Bioprocessing in Food Science,” is based on the novel technologies in usage and requirements for handling, processing, storage, and packaging of food. Novel bioprocessing technologies are gaining more interest among researchers and industries due to the minimal impact on product quality in comparison to conventional methods. These techniques are also superior in terms of energy, time-saving and extended shelf life, and thus can replace the conventional technologies partially or completely. Practical application of these technologies by the food industry, however, is limited due to higher costs, lack of knowledge in food manufacturers for the implementation of technologies, and validation systems. An in-depth discussion on consumer needs and rights, industry responsibilities, and future prospectus of novel technologies in food science are covered in this volume. The main objective of this book is to disseminate knowledge about the recent technologies developed in the field of food science to students, researchers, and industry people. This will enable them to make crucial decisions regarding the adoption, implementation, economics, and constraints of the different technologies. Different technologies like ultrasonication, pulse electric field, high-pressure processing, magnetization, ohmic heating, and irradiation are discussed with their application in food product manufacturing, packaging, food safety, and quality assurance. Whether for the veteran engineer or scientist, the student, or a manager or other technician working in the field, this volume is a must-have for any library.