Fundamentals of Set and Number Theory

Fundamentals of Set and Number Theory
Author: Valeriy K. Zakharov
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 448
Release: 2018-02-05
Genre: Mathematics
ISBN: 3110550946

This comprehensive two-volume work is devoted to the most general beginnings of mathematics. It goes back to Hausdorff’s classic Set Theory (2nd ed., 1927), where set theory and the theory of functions were expounded as the fundamental parts of mathematics in such a way that there was no need for references to other sources. Along the lines of Hausdorff’s initial work (1st ed., 1914), measure and integration theory is also included here as the third fundamental part of contemporary mathematics.The material about sets and numbers is placed in Volume 1 and the material about functions and measures is placed in Volume 2. Contents Fundamentals of the theory of classes, sets, and numbers Characterization of all natural models of Neumann – Bernays – Godel and Zermelo – Fraenkel set theories Local theory of sets as a foundation for category theory and its connection with the Zermelo – Fraenkel set theory Compactness theorem for generalized second-order language

An Adventurer's Guide to Number Theory

An Adventurer's Guide to Number Theory
Author: Richard Friedberg
Publisher: Courier Corporation
Total Pages: 241
Release: 2012-07-06
Genre: Mathematics
ISBN: 0486152693

This witty introduction to number theory deals with the properties of numbers and numbers as abstract concepts. Topics include primes, divisibility, quadratic forms, and related theorems.

Fundamentals of Mathematics

Fundamentals of Mathematics
Author: Bernd S. W. Schröder
Publisher: Wiley
Total Pages: 0
Release: 2010-08-16
Genre: Mathematics
ISBN: 9780470551387

An accessible introduction to abstract mathematics with an emphasis on proof writing Addressing the importance of constructing and understanding mathematical proofs, Fundamentals of Mathematics: An Introduction to Proofs, Logic, Sets, and Numbers introduces key concepts from logic and set theory as well as the fundamental definitions of algebra to prepare readers for further study in the field of mathematics. The author supplies a seamless, hands-on presentation of number systems, utilizing key elements of logic and set theory and encouraging readers to abide by the fundamental rule that you are not allowed to use any results that you have not proved yet. The book begins with a focus on the elements of logic used in everyday mathematical language, exposing readers to standard proof methods and Russell's Paradox. Once this foundation is established, subsequent chapters explore more rigorous mathematical exposition that outlines the requisite elements of Zermelo-Fraenkel set theory and constructs the natural numbers and integers as well as rational, real, and complex numbers in a rigorous, yet accessible manner. Abstraction is introduced as a tool, and special focus is dedicated to concrete, accessible applications, such as public key encryption, that are made possible by abstract ideas. The book concludes with a self-contained proof of Abel's Theorem and an investigation of deeper set theory by introducing the Axiom of Choice, ordinal numbers, and cardinal numbers. Throughout each chapter, proofs are written in much detail with explicit indications that emphasize the main ideas and techniques of proof writing. Exercises at varied levels of mathematical development allow readers to test their understanding of the material, and a related Web site features video presentations for each topic, which can be used along with the book or independently for self-study. Classroom-tested to ensure a fluid and accessible presentation, Fundamentals of Mathematics is an excellent book for mathematics courses on proofs, logic, and set theory at the upper-undergraduate level as well as a supplement for transition courses that prepare students for the rigorous mathematical reasoning of advanced calculus, real analysis, and modern algebra. The book is also a suitable reference for professionals in all areas of mathematics education who are interested in mathematical proofs and the foundation upon which all mathematics is built.

Introduction to the Theory of Sets

Introduction to the Theory of Sets
Author: Joseph Breuer
Publisher: Courier Corporation
Total Pages: 130
Release: 2012-08-09
Genre: Mathematics
ISBN: 0486154874

This undergraduate text develops its subject through observations of the physical world, covering finite sets, cardinal numbers, infinite cardinals, and ordinals. Includes exercises with answers. 1958 edition.

The Joy of Sets

The Joy of Sets
Author: Keith Devlin
Publisher: Springer Science & Business Media
Total Pages: 204
Release: 2012-12-06
Genre: Mathematics
ISBN: 146120903X

This text covers the parts of contemporary set theory relevant to other areas of pure mathematics. After a review of "naïve" set theory, it develops the Zermelo-Fraenkel axioms of the theory before discussing the ordinal and cardinal numbers. It then delves into contemporary set theory, covering such topics as the Borel hierarchy and Lebesgue measure. A final chapter presents an alternative conception of set theory useful in computer science.

Discrete Mathematics

Discrete Mathematics
Author: Oscar Levin
Publisher: Createspace Independent Publishing Platform
Total Pages: 342
Release: 2016-08-16
Genre:
ISBN: 9781534970748

This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.

A Book of Set Theory

A Book of Set Theory
Author: Charles C Pinter
Publisher: Courier Corporation
Total Pages: 259
Release: 2014-07-23
Genre: Mathematics
ISBN: 0486497089

"This accessible approach to set theory for upper-level undergraduates poses rigorous but simple arguments. Each definition is accompanied by commentary that motivates and explains new concepts. A historical introduction is followed by discussions of classes and sets, functions, natural and cardinal numbers, the arithmetic of ordinal numbers, and related topics. 1971 edition with new material by the author"--

Introduction to Number Theory

Introduction to Number Theory
Author: Mathew Crawford
Publisher: Ingram
Total Pages: 0
Release: 2008
Genre: Number theory
ISBN: 9781934124123

"Learn the fundamentals of number theory from former MATHCOUNTS, AHSME, and AIME perfect scorer Mathew Crawford. Topics covered in the book include primes & composites, multiples & divisors, prime factorization and its uses, base numbers, modular arithmetic, divisibility rules, linear congruences, how to develop number sense, and much more. The text is structured to inspire the reader to explore and develop new ideas. Each section starts with problems, so the student has a chance to solve them without help before proceeding. The text then includes motivated solutions to these problems, through which concepts and curriculum of number theory are taught. Important facts and powerful problem solving approaches are highlighted throughout the text. In addition to the instructional material, the book contains hundreds of problems ... This book is ideal for students who have mastered basic algebra, such as solving linear equations. Middle school students preparing for MATHCOUNTS, high school students preparing for the AMC, and other students seeking to master the fundamentals of number theory will find this book an instrumental part of their mathematics libraries."--Publisher's website

Proofs and Fundamentals

Proofs and Fundamentals
Author: Ethan D. Bloch
Publisher: Springer Science & Business Media
Total Pages: 378
Release: 2011-02-15
Genre: Mathematics
ISBN: 1441971270

“Proofs and Fundamentals: A First Course in Abstract Mathematics” 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition.