Geometry of Harmonic Maps

Geometry of Harmonic Maps
Author: Yuanlong Xin
Publisher: Springer Science & Business Media
Total Pages: 264
Release: 1996-04-30
Genre: Mathematics
ISBN: 9780817638207

Harmonic maps are solutions to a natural geometrical variational prob lem. This notion grew out of essential notions in differential geometry, such as geodesics, minimal surfaces and harmonic functions. Harmonic maps are also closely related to holomorphic maps in several complex variables, to the theory of stochastic processes, to nonlinear field theory in theoretical physics, and to the theory of liquid crystals in materials science. During the past thirty years this subject has been developed extensively. The monograph is by no means intended to give a complete description of the theory of harmonic maps. For example, the book excludes a large part of the theory of harmonic maps from 2-dimensional domains, where the methods are quite different from those discussed here. The first chapter consists of introductory material. Several equivalent definitions of harmonic maps are described, and interesting examples are presented. Various important properties and formulas are derived. Among them are Bochner-type formula for the energy density and the second varia tional formula. This chapter serves not only as a basis for the later chapters, but also as a brief introduction to the theory. Chapter 2 is devoted to the conservation law of harmonic maps. Em phasis is placed on applications of conservation law to the mono tonicity formula and Liouville-type theorems.

Two Reports on Harmonic Maps

Two Reports on Harmonic Maps
Author: James Eells
Publisher: World Scientific
Total Pages: 38
Release: 1995
Genre: Mathematics
ISBN: 9789810214661

Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, å-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and K„hlerian manifolds.A standard reference for this subject is a pair of Reports, published in 1978 and 1988 by James Eells and Luc Lemaire.This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers.

Geometry of Harmonic Maps

Geometry of Harmonic Maps
Author: Yuanlong Xin
Publisher: Springer Science & Business Media
Total Pages: 252
Release: 2012-12-06
Genre: Mathematics
ISBN: 1461240840

Harmonic maps are solutions to a natural geometrical variational prob lem. This notion grew out of essential notions in differential geometry, such as geodesics, minimal surfaces and harmonic functions. Harmonic maps are also closely related to holomorphic maps in several complex variables, to the theory of stochastic processes, to nonlinear field theory in theoretical physics, and to the theory of liquid crystals in materials science. During the past thirty years this subject has been developed extensively. The monograph is by no means intended to give a complete description of the theory of harmonic maps. For example, the book excludes a large part of the theory of harmonic maps from 2-dimensional domains, where the methods are quite different from those discussed here. The first chapter consists of introductory material. Several equivalent definitions of harmonic maps are described, and interesting examples are presented. Various important properties and formulas are derived. Among them are Bochner-type formula for the energy density and the second varia tional formula. This chapter serves not only as a basis for the later chapters, but also as a brief introduction to the theory. Chapter 2 is devoted to the conservation law of harmonic maps. Em phasis is placed on applications of conservation law to the mono tonicity formula and Liouville-type theorems.

Harmonic Maps Into Homogeneous Spaces

Harmonic Maps Into Homogeneous Spaces
Author: Malcolm Black
Publisher: Routledge
Total Pages: 104
Release: 2018-05-04
Genre: Mathematics
ISBN: 1351441620

Harmonic maps and the related theory of minimal surfaces are variational problems of long standing in differential geometry. Many important advances have been made in understanding harmonic maps of Riemann surfaces into symmetric spaces. In particular, ""twistor methods"" construct some, and in certain cases all, such mappings from holomorphic data. These notes develop techniques applicable to more general homogeneous manifolds, in particular a very general twistor result is proved. When applied to flag manifolds, this wider viewpoint allows many of the previously unrelated twistor results for symmetric spaces to be brought into a unified framework. These methods also enable a classification of harmonic maps into full flag manifolds to be established, and new examples are constructed. The techniques used are mostly a blend of the theory of compact Lie groups and complex differential geometry. This book should be of interest to mathematicians with experience in differential geometry and to theoretical physicists.

Conformal Geometry

Conformal Geometry
Author: Miao Jin
Publisher: Springer
Total Pages: 318
Release: 2018-04-10
Genre: Computers
ISBN: 3319753320

This book offers an essential overview of computational conformal geometry applied to fundamental problems in specific engineering fields. It introduces readers to conformal geometry theory and discusses implementation issues from an engineering perspective. The respective chapters explore fundamental problems in specific fields of application, and detail how computational conformal geometric methods can be used to solve them in a theoretically elegant and computationally efficient way. The fields covered include computer graphics, computer vision, geometric modeling, medical imaging, and wireless sensor networks. Each chapter concludes with a summary of the material covered and suggestions for further reading, and numerous illustrations and computational algorithms complement the text. The book draws on courses given by the authors at the University of Louisiana at Lafayette, the State University of New York at Stony Brook, and Tsinghua University, and will be of interest to senior undergraduates, graduates and researchers in computer science, applied mathematics, and engineering.

Algebra, Geometry, and Physics in the 21st Century

Algebra, Geometry, and Physics in the 21st Century
Author: Denis Auroux
Publisher: Birkhäuser
Total Pages: 368
Release: 2017-07-27
Genre: Mathematics
ISBN: 3319599399

This volume is a tribute to Maxim Kontsevich, one of the most original and influential mathematicians of our time. Maxim’s vision has inspired major developments in many areas of mathematics, ranging all the way from probability theory to motives over finite fields, and has brought forth a paradigm shift at the interface of modern geometry and mathematical physics. Many of his papers have opened completely new directions of research and led to the solutions of many classical problems. This book collects papers by leading experts currently engaged in research on topics close to Maxim’s heart. Contributors: S. Donaldson A. Goncharov D. Kaledin M. Kapranov A. Kapustin L. Katzarkov A. Noll P. Pandit S. Pimenov J. Ren P. Seidel C. Simpson Y. Soibelman R. Thorngren

The Analysis of Harmonic Maps and Their Heat Flows

The Analysis of Harmonic Maps and Their Heat Flows
Author: Fanghua Lin
Publisher: World Scientific
Total Pages: 280
Release: 2008
Genre: Science
ISBN: 9812779523

This book contains the proceedings of the Fourth Meeting on CPT and Lorentz Symmetry, held at Indiana University in Bloomington on August 8-11, 2007. The Meeting focused on experimental tests of these fundamental symmetries and on important theoretical issues, including scenarios for possible relativity violations. Experimental subjects covered include: astrophysical observations, clock-comparison measurements, cosmological birefringence, electromagnetic resonant cavities, gravitational tests, matter interferometry, muon behavior, neutrino oscillations, oscillations and decays of neutral mesons, particle-antiparticle comparisons, post-Newtonian gravity, space-based missions, spectroscopy of hydrogen and antihydrogen, and spin-polarized matter.Theoretical topics covered include: physical effects at the level of the Standard Model, General Relativity, and beyond; the possible origins and mechanisms for Lorentz and CPT violations; and associated issues in field theory, particle physics, gravity, and string theory. The contributors consist of the leading experts in this very active research field.