Data Science in Education Using R

Data Science in Education Using R
Author: Ryan A. Estrellado
Publisher: Routledge
Total Pages: 315
Release: 2020-10-26
Genre: Education
ISBN: 1000200906

Data Science in Education Using R is the go-to reference for learning data science in the education field. The book answers questions like: What does a data scientist in education do? How do I get started learning R, the popular open-source statistical programming language? And what does a data analysis project in education look like? If you’re just getting started with R in an education job, this is the book you’ll want with you. This book gets you started with R by teaching the building blocks of programming that you’ll use many times in your career. The book takes a "learn by doing" approach and offers eight analysis walkthroughs that show you a data analysis from start to finish, complete with code for you to practice with. The book finishes with how to get involved in the data science community and how to integrate data science in your education job. This book will be an essential resource for education professionals and researchers looking to increase their data analysis skills as part of their professional and academic development.

Statistical Methods

Statistical Methods
Author: Rudolf J. Freund
Publisher: Elsevier
Total Pages: 694
Release: 2003-01-07
Genre: Mathematics
ISBN: 0080498221

This broad text provides a complete overview of most standard statistical methods, including multiple regression, analysis of variance, experimental design, and sampling techniques. Assuming a background of only two years of high school algebra, this book teaches intelligent data analysis and covers the principles of good data collection. * Provides a complete discussion of analysis of data including estimation, diagnostics, and remedial actions * Examples contain graphical illustration for ease of interpretation * Intended for use with almost any statistical software * Examples are worked to a logical conclusion, including interpretation of results * A complete Instructor's Manual is available to adopters

The Behavioral and Social Sciences

The Behavioral and Social Sciences
Author: National Research Council
Publisher: National Academies Press
Total Pages: 301
Release: 1988-02-01
Genre: Science
ISBN: 0309037492

This volume explores the scientific frontiers and leading edges of research across the fields of anthropology, economics, political science, psychology, sociology, history, business, education, geography, law, and psychiatry, as well as the newer, more specialized areas of artificial intelligence, child development, cognitive science, communications, demography, linguistics, and management and decision science. It includes recommendations concerning new resources, facilities, and programs that may be needed over the next several years to ensure rapid progress and provide a high level of returns to basic research.

Hierarchical Linear Models

Hierarchical Linear Models
Author: Anthony S. Bryk
Publisher: SAGE Publications, Incorporated
Total Pages: 294
Release: 1992
Genre: Mathematics
ISBN:

Hierarchical Linear Models launches a new Sage series, Advanced Quantitative Techniques in the Social Sciences. This introductory text explicates the theory and use of hierarchical linear models (HLM) through rich, illustrative examples and lucid explanations. The presentation remains reasonably nontechnical by focusing on three general research purposes - improved estimation of effects within an individual unit, estimating and testing hypotheses about cross-level effects, and partitioning of variance and covariance components among levels. This innovative volume describes use of both two and three level models in organizational research, studies of individual development and meta-analysis applications, and concludes with a formal derivation of the statistical methods used in the book.

Data Science and Machine Learning

Data Science and Machine Learning
Author: Dirk P. Kroese
Publisher: CRC Press
Total Pages: 538
Release: 2019-11-20
Genre: Business & Economics
ISBN: 1000730778

Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code

Federal Statistics, Multiple Data Sources, and Privacy Protection

Federal Statistics, Multiple Data Sources, and Privacy Protection
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 195
Release: 2018-01-27
Genre: Social Science
ISBN: 0309465370

The environment for obtaining information and providing statistical data for policy makers and the public has changed significantly in the past decade, raising questions about the fundamental survey paradigm that underlies federal statistics. New data sources provide opportunities to develop a new paradigm that can improve timeliness, geographic or subpopulation detail, and statistical efficiency. It also has the potential to reduce the costs of producing federal statistics. The panel's first report described federal statistical agencies' current paradigm, which relies heavily on sample surveys for producing national statistics, and challenges agencies are facing; the legal frameworks and mechanisms for protecting the privacy and confidentiality of statistical data and for providing researchers access to data, and challenges to those frameworks and mechanisms; and statistical agencies access to alternative sources of data. The panel recommended a new approach for federal statistical programs that would combine diverse data sources from government and private sector sources and the creation of a new entity that would provide the foundational elements needed for this new approach, including legal authority to access data and protect privacy. This second of the panel's two reports builds on the analysis, conclusions, and recommendations in the first one. This report assesses alternative methods for implementing a new approach that would combine diverse data sources from government and private sector sources, including describing statistical models for combining data from multiple sources; examining statistical and computer science approaches that foster privacy protections; evaluating frameworks for assessing the quality and utility of alternative data sources; and various models for implementing the recommended new entity. Together, the two reports offer ideas and recommendations to help federal statistical agencies examine and evaluate data from alternative sources and then combine them as appropriate to provide the country with more timely, actionable, and useful information for policy makers, businesses, and individuals.

International Encyclopedia of Education

International Encyclopedia of Education
Author:
Publisher: Elsevier
Total Pages: 6964
Release: 2009-04-17
Genre: Education
ISBN: 0080448941

The field of education has experienced extraordinary technological, societal, and institutional change in recent years, making it one of the most fascinating yet complex fields of study in social science. Unequalled in its combination of authoritative scholarship and comprehensive coverage, International Encyclopedia of Education, Third Edition succeeds two highly successful previous editions (1985, 1994) in aiming to encapsulate research in this vibrant field for the twenty-first century reader. Under development for five years, this work encompasses over 1,000 articles across 24 individual areas of coverage, and is expected to become the dominant resource in the field. Education is a multidisciplinary and international field drawing on a wide range of social sciences and humanities disciplines, and this new edition comprehensively matches this diversity. The diverse background and multidisciplinary subject coverage of the Editorial Board ensure a balanced and objective academic framework, with 1,500 contributors representing over 100 countries, capturing a complete portrait of this evolving field. A totally new work, revamped with a wholly new editorial board, structure and brand-new list of meta-sections and articles Developed by an international panel of editors and authors drawn from senior academia Web-enhanced with supplementary multimedia audio and video files, hotlinked to relevant references and sources for further study Incorporates ca. 1,350 articles, with timely coverage of such topics as technology and learning, demography and social change, globalization, and adult learning, to name a few Offers two content delivery options - print and online - the latter of which provides anytime, anywhere access for multiple users and superior search functionality via ScienceDirect, as well as multimedia content, including audio and video files

Computer Recognition Systems

Computer Recognition Systems
Author: Marek Kurzynski
Publisher: Springer Science & Business Media
Total Pages: 895
Release: 2007-12-13
Genre: Computers
ISBN: 3540323902

th This book contains papers accepted for presentation at the 4 International Conference on Computer Recognition Systems CORES'05, May 22-25, 2005, Rydzyna Castle (Poland), This conference is a continuation of a series of con ferences on similar topics (KOSYR) organized each second year, since 1999, by the Chair of Systems and Computer Networks, Wroclaw University of Tech nology. An increasing interest to those conferences paid not only by home but also by foreign participants inspired the organizers to transform them into conferences of international range. Our expectations that the community of specialists in computer recognizing systems will find CORES'05 a proper form of maintaining the tradition of the former conferences have been confirmed by a large number of submitted papers. Alas, organizational constraints caused a necessity to narrow the acceptance criteria so that only 100 papers have been finally included into the conference program. The area covered by accepted papers is still very large and it shows how vivacious is scientific activity in the domain of computer recognition methods and systems. It contains vari ous theoretical approaches to the recognition problem based on mathematical statistics, fuzzy sets, morphological methods, wavelets, syntactic methods, genetic algorithms, artificial neural networks, ontological models, etc. Most attention is still paid to visual objects recognition; however, acoustic, tex tual and other objects are also considered. Among application areas medical problems are in majority; recognition of faces, speech signals and textual in formation processing methods being also investigated.