Group Representation for Quantum Theory

Group Representation for Quantum Theory
Author: Masahito Hayashi
Publisher: Springer
Total Pages: 357
Release: 2016-11-18
Genre: Science
ISBN: 3319449060

This book explains the group representation theory for quantum theory in the language of quantum theory. As is well known, group representation theory is very strong tool for quantum theory, in particular, angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, quark model, quantum optics, and quantum information processing including quantum error correction. To describe a big picture of application of representation theory to quantum theory, the book needs to contain the following six topics, permutation group, SU(2) and SU(d), Heisenberg representation, squeezing operation, Discrete Heisenberg representation, and the relation with Fourier transform from a unified viewpoint by including projective representation. Unfortunately, although there are so many good mathematical books for a part of six topics, no book contains all of these topics because they are too segmentalized. Further, some of them are written in an abstract way in mathematical style and, often, the materials are too segmented. At least, the notation is not familiar to people working with quantum theory. Others are good elementary books, but do not deal with topics related to quantum theory. In particular, such elementary books do not cover projective representation, which is more important in quantum theory. On the other hand, there are several books for physicists. However, these books are too simple and lack the detailed discussion. Hence, they are not useful for advanced study even in physics. To resolve this issue, this book starts with the basic mathematics for quantum theory. Then, it introduces the basics of group representation and discusses the case of the finite groups, the symmetric group, e.g. Next, this book discusses Lie group and Lie algebra. This part starts with the basics knowledge, and proceeds to the special groups, e.g., SU(2), SU(1,1), and SU(d). After the special groups, it explains concrete applications to physical systems, e.g., angular momentum, hydrogen-type Hamiltonian, spin-orbit interaction, and quark model. Then, it proceeds to the general theory for Lie group and Lie algebra. Using this knowledge, this book explains the Bosonic system, which has the symmetries of Heisenberg group and the squeezing symmetry by SL(2,R) and Sp(2n,R). Finally, as the discrete version, this book treats the discrete Heisenberg representation which is related to quantum error correction. To enhance readers' undersnding, this book contains 54 figures, 23 tables, and 111 exercises with solutions.

Quantum Theory, Groups and Representations

Quantum Theory, Groups and Representations
Author: Peter Woit
Publisher: Springer
Total Pages: 659
Release: 2017-11-01
Genre: Science
ISBN: 3319646125

This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.

Group Representation Theory For Physicists (2nd Edition)

Group Representation Theory For Physicists (2nd Edition)
Author: Jialun Ping
Publisher: World Scientific Publishing Company
Total Pages: 602
Release: 2002-08-15
Genre: Science
ISBN: 981310600X

This book introduces systematically the eigenfunction method, a new approach to the group representation theory which was developed by the authors in the 1970's and 1980's in accordance with the concept and method used in quantum mechanics. It covers the applications of the group theory in various branches of physics and quantum chemistry, especially nuclear and molecular physics. Extensive tables and computational methods are presented.Group Representation Theory for Physicists may serve as a handbook for researchers doing group theory calculations. It is also a good reference book and textbook for undergraduate and graduate students who intend to use group theory in their future research careers.

Group Theory and Quantum Mechanics

Group Theory and Quantum Mechanics
Author: Michael Tinkham
Publisher: Courier Corporation
Total Pages: 354
Release: 2012-04-20
Genre: Science
ISBN: 0486131661

This graduate-level text develops the aspects of group theory most relevant to physics and chemistry (such as the theory of representations) and illustrates their applications to quantum mechanics. The first five chapters focus chiefly on the introduction of methods, illustrated by physical examples, and the final three chapters offer a systematic treatment of the quantum theory of atoms, molecules, and solids. The formal theory of finite groups and their representation is developed in Chapters 1 through 4 and illustrated by examples from the crystallographic point groups basic to solid-state and molecular theory. Chapter 5 is devoted to the theory of systems with full rotational symmetry, Chapter 6 to the systematic presentation of atomic structure, and Chapter 7 to molecular quantum mechanics. Chapter 8, which deals with solid-state physics, treats electronic energy band theory and magnetic crystal symmetry. A compact and worthwhile compilation of the scattered material on standard methods, this volume presumes a basic understanding of quantum theory.

Quantum Groups and Their Representations

Quantum Groups and Their Representations
Author: Anatoli Klimyk
Publisher: Springer Science & Business Media
Total Pages: 568
Release: 2012-12-06
Genre: Science
ISBN: 3642608965

This book start with an introduction to quantum groups for the beginner and continues as a textbook for graduate students in physics and in mathematics. It can also be used as a reference by more advanced readers. The authors cover a large but well-chosen variety of subjects from the theory of quantum groups (quantized universal enveloping algebras, quantized algebras of functions) and q-deformed algebras (q-oscillator algebras), their representations and corepresentations, and noncommutative differential calculus. The book is written with potential applications in physics and mathematics in mind. The basic quantum groups and quantum algebras and their representations are given in detail and accompanied by explicit formulas. A number of topics and results from the more advanced general theory are developed and discussed.

A Group Theoretic Approach to Quantum Information

A Group Theoretic Approach to Quantum Information
Author: Masahito Hayashi
Publisher: Springer
Total Pages: 240
Release: 2016-10-31
Genre: Science
ISBN: 331945241X

This book is the first one addressing quantum information from the viewpoint of group symmetry. Quantum systems have a group symmetrical structure. This structure enables to handle systematically quantum information processing. However, there is no other textbook focusing on group symmetry for quantum information although there exist many textbooks for group representation. After the mathematical preparation of quantum information, this book discusses quantum entanglement and its quantification by using group symmetry. Group symmetry drastically simplifies the calculation of several entanglement measures although their calculations are usually very difficult to handle. This book treats optimal information processes including quantum state estimation, quantum state cloning, estimation of group action and quantum channel etc. Usually it is very difficult to derive the optimal quantum information processes without asymptotic setting of these topics. However, group symmetry allows to derive these optimal solutions without assuming the asymptotic setting. Next, this book addresses the quantum error correcting code with the symmetric structure of Weyl-Heisenberg groups. This structure leads to understand the quantum error correcting code systematically. Finally, this book focuses on the quantum universal information protocols by using the group SU(d). This topic can be regarded as a quantum version of the Csiszar-Korner's universal coding theory with the type method. The required mathematical knowledge about group representation is summarized in the companion book, Group Representation for Quantum Theory.

Representation Theory of Algebraic Groups and Quantum Groups

Representation Theory of Algebraic Groups and Quantum Groups
Author: Toshiaki Shoji
Publisher: American Mathematical Society(RI)
Total Pages: 514
Release: 2004
Genre: Computers
ISBN:

A collection of research and survey papers written by speakers at the Mathematical Society of Japan's 10th International Conference. This title presents an overview of developments in representation theory of algebraic groups and quantum groups. It includes papers containing results concerning Lusztig's conjecture on cells in affine Weyl groups.

Theory of Group Representations and Applications

Theory of Group Representations and Applications
Author: Asim Orhan Barut
Publisher: World Scientific
Total Pages: 750
Release: 1986
Genre: Mathematics
ISBN: 9789971502171

Lie!algebras - Topological!groups - Lie!groups - Representations - Special!functions - Induced!representations.

Group Theory in Quantum Mechanics

Group Theory in Quantum Mechanics
Author: Volker Heine
Publisher: Elsevier
Total Pages: 479
Release: 2014-05-15
Genre: Science
ISBN: 1483152006

Group Theory in Quantum Mechanics: An Introduction to its Present Usage introduces the reader to the three main uses of group theory in quantum mechanics: to label energy levels and the corresponding eigenstates; to discuss qualitatively the splitting of energy levels as one starts from an approximate Hamiltonian and adds correction terms; and to aid in the evaluation of matrix elements of all kinds, and in particular to provide general selection rules for the non-zero ones. The theme is to show how all this is achieved by considering the symmetry properties of the Hamiltonian and the way in which these symmetries are reflected in the wave functions. This book is comprised of eight chapters and begins with an overview of the necessary mathematical concepts, including representations and vector spaces and their relevance to quantum mechanics. The uses of symmetry properties and mathematical expression of symmetry operations are also outlined, along with symmetry transformations of the Hamiltonian. The next chapter describes the three uses of group theory, with particular reference to the theory of atomic energy levels and transitions. The following chapters deal with the theory of free atoms and ions; representations of finite groups; the electronic structure and vibrations of molecules; solid state physics; and relativistic quantum mechanics. Nuclear physics is also discussed, with emphasis on the isotopic spin formalism, nuclear forces, and the reactions that arise when the nuclei take part in time-dependent processes. This monograph will be of interest to physicists and mathematicians.