Handbook of Biofunctional Surfaces

Handbook of Biofunctional Surfaces
Author: Wolfgang Knoll
Publisher: CRC Press
Total Pages: 1186
Release: 2013-05-22
Genre: Medical
ISBN: 9814316636

The design and synthesis of molecularly or supramolecularly defined interfacial architectures have seen in recent years a remarkable growth of interest and scientific research activities for various reasons. On the one hand, it is generally believed that the construction of an interactive interface between the living world of cells, tissue, or whole organisms and the (inorganic or organic) materials world of technical devices such as implants or medical parts requires proper construction and structural (and functional) control of this organism–machine interface. It is still the very beginning of generating a better understanding of what is needed to make an organism tolerate implants, to guarantee bidirectional communication between microelectronic devices and living tissue, or to simply construct interactive biocompatibility of surfaces in general. This exhaustive book lucidly describes the design, synthesis, assembly and characterization, and bio-(medical) applications of interfacial layers on solid substrates with molecularly or supramolecularly controlled architectures. Experts in the field share their contributions that have been developed in recent years.

Hybrid Polymer Composite Materials: Structure and Chemistry

Hybrid Polymer Composite Materials: Structure and Chemistry
Author: Vijay Kumar Thakur
Publisher: Woodhead Publishing
Total Pages: 358
Release: 2017-06-03
Genre: Technology & Engineering
ISBN: 0081007922

Hybrid Polymer Composite Materials: Volume 1: Structure and Chemistry presents the latest on these composite materials that can best be described as materials that are comprised of synthetic polymers and biological/inorganic/organic derived constituents. The combination of unique properties that emerge as a consequence of the particular arrangement and interactions between the different constituents provides immense opportunities for advanced material technologies. This series of four volumes brings an interdisciplinary effort to accomplish a more detailed understanding of the interplay between synthesis, structure, characterization, processing, applications, and performance of these advanced materials, with this volume focusing on their structure and chemistry. - Provides a clear understanding of the present state-of-the-art and the growing utility of hybrid polymer composite materials - Includes contributions from world renowned experts and discusses the combination of different kinds of materials procured from diverse resources - Discusses their synthesis, chemistry, processing, fundamental properties, and applications - Provides insights on the potential of hybrid polymer composite materials for advanced applications

Biomaterials for Photocatalysis

Biomaterials for Photocatalysis
Author: Awais Ahmad
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 166
Release: 2023-10-04
Genre: Science
ISBN: 3110768747

Biomaterials are advanced materials that garner interdisciplinary research. Wastewater pollution causes many adverse effects on human health and the environment. In order to rectify this, biomaterials and other nanomaterials have been utilized as photocatalysts against environmental waste. In this book, biomaterials are highlighted as a promising material for waste management, as biomaterials are cost-effective, eco-friendly and closer to nature.

The Nano-Micro Interface

The Nano-Micro Interface
Author: Marcel Van de Voorde
Publisher: John Wiley & Sons
Total Pages: 771
Release: 2015-01-12
Genre: Technology & Engineering
ISBN: 3527679219

Controlling the properties of materials by modifying their composition and by manipulating the arrangement of atoms and molecules is a dream that can be achieved by nanotechnology. As one of the fastest developing and innovative -- as well as well-funded -- fields in science, nanotechnology has already significantly changed the research landscape in chemistry, materials science, and physics, with numerous applications in consumer products, such as sunscreens and water-repellent clothes. It is also thanks to this multidisciplinary field that flat panel displays, highly efficient solar cells, and new biological imaging techniques have become reality. This second, enlarged edition has been fully updated to address the rapid progress made within this field in recent years. Internationally recognized experts provide comprehensive, first-hand information, resulting in an overview of the entire nano-micro world. In so doing, they cover aspects of funding and commercialization, the manufacture and future applications of nanomaterials, the fundamentals of nanostructures leading to macroscale objects as well as the ongoing miniaturization toward the nanoscale domain. Along the way, the authors explain the effects occurring at the nanoscale and the nanotechnological characterization techniques. An additional topic on the role of nanotechnology in energy and mobility covers the challenge of developing materials and devices, such as electrodes and membrane materials for fuel cells and catalysts for sustainable transportation. Also new to this edition are the latest figures for funding, investments, and commercialization prospects, as well as recent research programs and organizations.

The Nano-Micro Interface, 2 Volumes

The Nano-Micro Interface, 2 Volumes
Author: Marcel Van de Voorde
Publisher: John Wiley & Sons
Total Pages: 771
Release: 2015-03-09
Genre: Technology & Engineering
ISBN: 3527336338

Controlling the properties of materials by modifying their composition and by manipulating the arrangement of atoms and molecules is a dream that can be achieved by nanotechnology. As one of the fastest developing and innovative -- as well as well-funded -- fields in science, nanotechnology has already significantly changed the research landscape in chemistry, materials science, and physics, with numerous applications in consumer products, such as sunscreens and water-repellent clothes. It is also thanks to this multidisciplinary field that flat panel displays, highly efficient solar cells, and new biological imaging techniques have become reality. This second, enlarged edition has been fully updated to address the rapid progress made within this field in recent years. Internationally recognized experts provide comprehensive, first-hand information, resulting in an overview of the entire nano-micro world. In so doing, they cover aspects of funding and commercialization, the manufacture and future applications of nanomaterials, the fundamentals of nanostructures leading to macroscale objects as well as the ongoing miniaturization toward the nanoscale domain. Along the way, the authors explain the effects occurring at the nanoscale and the nanotechnological characterization techniques. An additional topic on the role of nanotechnology in energy and mobility covers the challenge of developing materials and devices, such as electrodes and membrane materials for fuel cells and catalysts for sustainable transportation. Also new to this edition are the latest figures for funding, investments, and commercialization prospects, as well as recent research programs and organizations.

Dual-Mode Electro-photonic Silicon Biosensors

Dual-Mode Electro-photonic Silicon Biosensors
Author: José Juan Colás
Publisher: Springer
Total Pages: 159
Release: 2017-07-18
Genre: Science
ISBN: 3319605011

This highly interdisciplinary thesis reports on two innovative photonic biosensors that combine multiple simultaneous measurements to provide unique insights into the activity and structure of surface immobilized biological molecules. In addition, it presents a new silicon photonic biosensor that exploits two cascaded resonant sensors to provide two independent measurements of a biological layer immobilized on the surface. By combining these two measurements, it is possible to unambiguously quantify the density and thickness of the molecular layer; here, the approach’s ability to study molecular conformation and conformational changes in real time is demonstrated. The electrophotonic biosensor integrates silicon photonics with electrochemistry into a single technology. This multi-modal biosensor provides a number of unique capabilities that extend the functionality of conventional silicon photonics. For example, by combining the complementary information revealed by simultaneous electrochemical and photonic measurements, it is possible to provide unique insights into on-surface electrochemical processes. Furthermore, the ability to create electrochemical reactions directly on the silicon surface provides a novel approach for engineering the chemical functionality of the photonic sensors. The electrophotonic biosensor thus represents a critical advance towards the development of very high-density photonic sensor arrays for multiplexed diagnostics.

Nanobiomaterials Science, Development and Evaluation

Nanobiomaterials Science, Development and Evaluation
Author: Mehdi Razavi
Publisher: Woodhead Publishing
Total Pages: 341
Release: 2017-05-22
Genre: Technology & Engineering
ISBN: 0081009682

Nanobiomaterials Science, Development and Evaluation examines the practical aspects of producing nanostructured biomaterials for a range of applications. With a strong focus on materials, such as metals, ceramics, polymers, and composites, the book also examines nanostructured coatings and toxicology aspects. Chapters in Part One look at materials classes and their synthesis with information on all major material groups. Part Two focuses on nanostructured coatings and practical aspects associated with the use of nanobiomaterials in vivo. This book brings together the work of international contributors who are actively engaged on the forefront of research in their respective disciplines, and is a valuable resource for materials scientists in academia, industry, and all those who wish to broaden their knowledge in the allied field. - Focuses on the synthesis and evaluation techniques for a range of nanobiomaterials - Examines nanostructured inorganic coatings for biomaterials - Discusses issues related to the toxicology of nanobiomaterials - Presents the practical aspects of nanobiomaterials

Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications

Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications
Author: Luis L. Bonilla
Publisher: Springer
Total Pages: 312
Release: 2018-06-20
Genre: Mathematics
ISBN: 331976599X

This volume gathers selected contributions from the participants of the Banff International Research Station (BIRS) workshop Coupled Mathematical Models for Physical and Biological Nanoscale Systems and their Applications, who explore various aspects of the analysis, modeling and applications of nanoscale systems, with a particular focus on low dimensional nanostructures and coupled mathematical models for their description. Due to the vastness, novelty and complexity of the interfaces between mathematical modeling and nanoscience and nanotechnology, many important areas in these disciplines remain largely unexplored. In their efforts to move forward, multidisciplinary research communities have come to a clear understanding that, along with experimental techniques, mathematical modeling and analysis have become crucial to the study, development and application of systems at the nanoscale. The conference, held at BIRS in autumn 2016, brought together experts from three different communities working in fields where coupled mathematical models for nanoscale and biosystems are especially relevant: mathematicians, physicists (both theorists and experimentalists), and computational scientists, including those dealing with biological nanostructures. Its objectives: summarize the state-of-the-art; identify and prioritize critical problems of major importance that require solutions; analyze existing methodologies; and explore promising approaches to addressing the challenges identified. The contributions offer up-to-date introductions to a range of topics in nano and biosystems, identify important challenges, assess current methodologies and explore promising approaches. As such, this book will benefit researchers in applied mathematics, as well as physicists and biologists interested in coupled mathematical models and their analysis for physical and biological nanoscale systems that concern applications in biotechnology and medicine, quantum information processing and optoelectronics.