Handbook of Probabilistic Models

Handbook of Probabilistic Models
Author: Pijush Samui
Publisher: Butterworth-Heinemann
Total Pages: 592
Release: 2019-10-05
Genre: Computers
ISBN: 0128165464

Handbook of Probabilistic Models carefully examines the application of advanced probabilistic models in conventional engineering fields. In this comprehensive handbook, practitioners, researchers and scientists will find detailed explanations of technical concepts, applications of the proposed methods, and the respective scientific approaches needed to solve the problem. This book provides an interdisciplinary approach that creates advanced probabilistic models for engineering fields, ranging from conventional fields of mechanical engineering and civil engineering, to electronics, electrical, earth sciences, climate, agriculture, water resource, mathematical sciences and computer sciences. Specific topics covered include minimax probability machine regression, stochastic finite element method, relevance vector machine, logistic regression, Monte Carlo simulations, random matrix, Gaussian process regression, Kalman filter, stochastic optimization, maximum likelihood, Bayesian inference, Bayesian update, kriging, copula-statistical models, and more. - Explains the application of advanced probabilistic models encompassing multidisciplinary research - Applies probabilistic modeling to emerging areas in engineering - Provides an interdisciplinary approach to probabilistic models and their applications, thus solving a wide range of practical problems

Handbook of Graphical Models

Handbook of Graphical Models
Author: Marloes Maathuis
Publisher: CRC Press
Total Pages: 612
Release: 2018-11-12
Genre: Mathematics
ISBN: 0429874235

A graphical model is a statistical model that is represented by a graph. The factorization properties underlying graphical models facilitate tractable computation with multivariate distributions, making the models a valuable tool with a plethora of applications. Furthermore, directed graphical models allow intuitive causal interpretations and have become a cornerstone for causal inference. While there exist a number of excellent books on graphical models, the field has grown so much that individual authors can hardly cover its entire scope. Moreover, the field is interdisciplinary by nature. Through chapters by leading researchers from different areas, this handbook provides a broad and accessible overview of the state of the art. Key features: * Contributions by leading researchers from a range of disciplines * Structured in five parts, covering foundations, computational aspects, statistical inference, causal inference, and applications * Balanced coverage of concepts, theory, methods, examples, and applications * Chapters can be read mostly independently, while cross-references highlight connections The handbook is targeted at a wide audience, including graduate students, applied researchers, and experts in graphical models.

Handbook of Probability

Handbook of Probability
Author: Tamás Rudas
Publisher: SAGE
Total Pages: 489
Release: 2008-02-21
Genre: Mathematics
ISBN: 1412927145

"This is a valuable reference guide for readers interested in gaining a basic understanding of probability theory or its applications in problem solving in the other disciplines." —CHOICE Providing cutting-edge perspectives and real-world insights into the greater utility of probability and its applications, the Handbook of Probability offers an equal balance of theory and direct applications in a non-technical, yet comprehensive, format. Editor Tamás Rudas and the internationally-known contributors present the material in a manner so that researchers of various backgrounds can use the reference either as a primer for understanding basic probability theory or as a more advanced research tool for specific projects requiring a deeper understanding. The wide-ranging applications of probability presented make it useful for scholars who need to make interdisciplinary connections in their work. Key Features Contains contributions from the international who's-who of probability across several disciplines Offers an equal balance of theory and applications Explains the most important concepts of probability theory in a non-technical yet comprehensive way Provides in-depth examples of recent applications in the social and behavioral sciences as well as education, business, and law Intended Audience This Handbook makes an ideal library purchase. In addition, this volume should also be of interest to individual scholars in the social and behavioral sciences.

Probabilistic Techniques in Exposure Assessment

Probabilistic Techniques in Exposure Assessment
Author: Alison C. Cullen
Publisher: Springer Science & Business
Total Pages: 294
Release: 1999-07-31
Genre: Medical
ISBN: 9780306459573

In this text, experts provide a complete sourcebook on methods for addressing variability and uncertainty in exposure analysis.

Handbook of Mixed Membership Models and Their Applications

Handbook of Mixed Membership Models and Their Applications
Author: Edoardo M. Airoldi
Publisher: CRC Press
Total Pages: 608
Release: 2014-11-06
Genre: Computers
ISBN: 1466504099

Incorporating more than 20 years of the editors' and contributors' statistical work in mixed membership modeling, this handbook shows how to use these flexible modeling tools to uncover hidden patterns in modern high-dimensional multivariate data. It explores the use of the models in various application settings, including survey data, population genetics, text analysis, image processing and annotation, and molecular biology. Through examples using real data sets, readers will discover how to characterize complex multivariate data in a range of areas.

Probabilistic Machine Learning

Probabilistic Machine Learning
Author: Kevin P. Murphy
Publisher: MIT Press
Total Pages: 858
Release: 2022-03-01
Genre: Computers
ISBN: 0262369303

A detailed and up-to-date introduction to machine learning, presented through the unifying lens of probabilistic modeling and Bayesian decision theory. This book offers a detailed and up-to-date introduction to machine learning (including deep learning) through the unifying lens of probabilistic modeling and Bayesian decision theory. The book covers mathematical background (including linear algebra and optimization), basic supervised learning (including linear and logistic regression and deep neural networks), as well as more advanced topics (including transfer learning and unsupervised learning). End-of-chapter exercises allow students to apply what they have learned, and an appendix covers notation. Probabilistic Machine Learning grew out of the author’s 2012 book, Machine Learning: A Probabilistic Perspective. More than just a simple update, this is a completely new book that reflects the dramatic developments in the field since 2012, most notably deep learning. In addition, the new book is accompanied by online Python code, using libraries such as scikit-learn, JAX, PyTorch, and Tensorflow, which can be used to reproduce nearly all the figures; this code can be run inside a web browser using cloud-based notebooks, and provides a practical complement to the theoretical topics discussed in the book. This introductory text will be followed by a sequel that covers more advanced topics, taking the same probabilistic approach.

Handbook of Model Checking

Handbook of Model Checking
Author: Edmund M. Clarke
Publisher: Springer
Total Pages: 1210
Release: 2018-05-18
Genre: Computers
ISBN: 3319105752

Model checking is a computer-assisted method for the analysis of dynamical systems that can be modeled by state-transition systems. Drawing from research traditions in mathematical logic, programming languages, hardware design, and theoretical computer science, model checking is now widely used for the verification of hardware and software in industry. The editors and authors of this handbook are among the world's leading researchers in this domain, and the 32 contributed chapters present a thorough view of the origin, theory, and application of model checking. In particular, the editors classify the advances in this domain and the chapters of the handbook in terms of two recurrent themes that have driven much of the research agenda: the algorithmic challenge, that is, designing model-checking algorithms that scale to real-life problems; and the modeling challenge, that is, extending the formalism beyond Kripke structures and temporal logic. The book will be valuable for researchers and graduate students engaged with the development of formal methods and verification tools.

Handbook of Food and Bioprocess Modeling Techniques

Handbook of Food and Bioprocess Modeling Techniques
Author: Shyam S. Sablani
Publisher: CRC Press
Total Pages: 624
Release: 2006-12-19
Genre: Science
ISBN: 1420015079

With the advancement of computers, the use of modeling to reduce time and expense, and improve process optimization, predictive capability, process automation, and control possibilities, is now an integral part of food science and engineering. New technology and ease of use expands the range of techniques that scientists and researchers have at the

Probabilistic Reliability Models

Probabilistic Reliability Models
Author: Igor A. Ushakov
Publisher: John Wiley & Sons
Total Pages: 166
Release: 2012-08-07
Genre: Business & Economics
ISBN: 1118370767

Practical Approaches to Reliability Theory in Cutting-Edge Applications Probabilistic Reliability Models helps readers understand and properly use statistical methods and optimal resource allocation to solve engineering problems. The author supplies engineers with a deeper understanding of mathematical models while also equipping mathematically oriented readers with a fundamental knowledge of the engineeringrelated applications at the center of model building. The book showcases the use of probability theory and mathematical statistics to solve common, real-world reliability problems. Following an introduction to the topic, subsequent chapters explore key systems and models including: • Unrecoverable objects and recoverable systems • Methods of direct enumeration • Markov models and heuristic models • Performance effectiveness • Time redundancy • System survivability • Aging units and their related systems • Multistate systems Detailed case studies illustrate the relevance of the discussed methods to real-world technical projects including software failure avalanches, gas pipelines with underground storage, and intercontinental ballistic missile (ICBM) control systems. Numerical examples and detailed explanations accompany each topic, and exercises throughout allow readers to test their comprehension of the presented material. Probabilistic Reliability Models is an excellent book for statistics, engineering, and operations research courses on applied probability at the upper-undergraduate and graduate levels. The book is also a valuable reference for professionals and researchers working in industry who would like a mathematical review of reliability models and the relevant applications.