Inference in Hidden Markov Models

Inference in Hidden Markov Models
Author: Olivier Cappé
Publisher: Springer Science & Business Media
Total Pages: 656
Release: 2006-04-12
Genre: Mathematics
ISBN: 0387289828

This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.

Inference in Hidden Markov Models

Inference in Hidden Markov Models
Author: Olivier Cappé
Publisher: Springer Science & Business Media
Total Pages: 682
Release: 2005-08-04
Genre: Business & Economics
ISBN: 9780387402642

This book is a comprehensive treatment of inference for hidden Markov models, including both algorithms and statistical theory. Topics range from filtering and smoothing of the hidden Markov chain to parameter estimation, Bayesian methods and estimation of the number of states. In a unified way the book covers both models with finite state spaces and models with continuous state spaces (also called state-space models) requiring approximate simulation-based algorithms that are also described in detail. Many examples illustrate the algorithms and theory. This book builds on recent developments to present a self-contained view.

Hidden Markov Models for Time Series

Hidden Markov Models for Time Series
Author: Walter Zucchini
Publisher: CRC Press
Total Pages: 370
Release: 2017-12-19
Genre: Mathematics
ISBN: 1482253844

Hidden Markov Models for Time Series: An Introduction Using R, Second Edition illustrates the great flexibility of hidden Markov models (HMMs) as general-purpose models for time series data. The book provides a broad understanding of the models and their uses. After presenting the basic model formulation, the book covers estimation, forecasting, decoding, prediction, model selection, and Bayesian inference for HMMs. Through examples and applications, the authors describe how to extend and generalize the basic model so that it can be applied in a rich variety of situations. The book demonstrates how HMMs can be applied to a wide range of types of time series: continuous-valued, circular, multivariate, binary, bounded and unbounded counts, and categorical observations. It also discusses how to employ the freely available computing environment R to carry out the computations. Features Presents an accessible overview of HMMs Explores a variety of applications in ecology, finance, epidemiology, climatology, and sociology Includes numerous theoretical and programming exercises Provides most of the analysed data sets online New to the second edition A total of five chapters on extensions, including HMMs for longitudinal data, hidden semi-Markov models and models with continuous-valued state process New case studies on animal movement, rainfall occurrence and capture-recapture data

Bayesian Time Series Models

Bayesian Time Series Models
Author: David Barber
Publisher: Cambridge University Press
Total Pages: 432
Release: 2011-08-11
Genre: Computers
ISBN: 0521196760

The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.

Hidden Markov Models

Hidden Markov Models
Author: David R. Westhead
Publisher: Humana
Total Pages: 0
Release: 2017-02-22
Genre: Science
ISBN: 9781493967513

This volume aims to provide a new perspective on the broader usage of Hidden Markov Models (HMMs) in biology. Hidden Markov Models: Methods and Protocols guides readers through chapters on biological systems; ranging from single biomolecule, cellular level, and to organism level and the use of HMMs in unravelling the complex mechanisms that govern these complex systems. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and practical, Hidden Markov Models: Methods and Protocols aims to demonstrate the impact of HMM in biology and inspire new research.

The Application of Hidden Markov Models in Speech Recognition

The Application of Hidden Markov Models in Speech Recognition
Author: Mark Gales
Publisher: Now Publishers Inc
Total Pages: 125
Release: 2008
Genre: Automatic speech recognition
ISBN: 1601981201

The Application of Hidden Markov Models in Speech Recognition presents the core architecture of a HMM-based LVCSR system and proceeds to describe the various refinements which are needed to achieve state-of-the-art performance.

Parameter Redundancy and Identifiability

Parameter Redundancy and Identifiability
Author: Diana Cole
Publisher: CRC Press
Total Pages: 273
Release: 2020-05-10
Genre: Mathematics
ISBN: 1498720900

Statistical and mathematical models are defined by parameters that describe different characteristics of those models. Ideally it would be possible to find parameter estimates for every parameter in that model, but, in some cases, this is not possible. For example, two parameters that only ever appear in the model as a product could not be estimated individually; only the product can be estimated. Such a model is said to be parameter redundant, or the parameters are described as non-identifiable. This book explains why parameter redundancy and non-identifiability is a problem and the different methods that can be used for detection, including in a Bayesian context. Key features of this book: Detailed discussion of the problems caused by parameter redundancy and non-identifiability Explanation of the different general methods for detecting parameter redundancy and non-identifiability, including symbolic algebra and numerical methods Chapter on Bayesian identifiability Throughout illustrative examples are used to clearly demonstrate each problem and method. Maple and R code are available for these examples More in-depth focus on the areas of discrete and continuous state-space models and ecological statistics, including methods that have been specifically developed for each of these areas This book is designed to make parameter redundancy and non-identifiability accessible and understandable to a wide audience from masters and PhD students to researchers, from mathematicians and statisticians to practitioners using mathematical or statistical models.

Efficient Learning Machines

Efficient Learning Machines
Author: Mariette Awad
Publisher: Apress
Total Pages: 263
Release: 2015-04-27
Genre: Computers
ISBN: 1430259906

Machine learning techniques provide cost-effective alternatives to traditional methods for extracting underlying relationships between information and data and for predicting future events by processing existing information to train models. Efficient Learning Machines explores the major topics of machine learning, including knowledge discovery, classifications, genetic algorithms, neural networking, kernel methods, and biologically-inspired techniques. Mariette Awad and Rahul Khanna’s synthetic approach weaves together the theoretical exposition, design principles, and practical applications of efficient machine learning. Their experiential emphasis, expressed in their close analysis of sample algorithms throughout the book, aims to equip engineers, students of engineering, and system designers to design and create new and more efficient machine learning systems. Readers of Efficient Learning Machines will learn how to recognize and analyze the problems that machine learning technology can solve for them, how to implement and deploy standard solutions to sample problems, and how to design new systems and solutions. Advances in computing performance, storage, memory, unstructured information retrieval, and cloud computing have coevolved with a new generation of machine learning paradigms and big data analytics, which the authors present in the conceptual context of their traditional precursors. Awad and Khanna explore current developments in the deep learning techniques of deep neural networks, hierarchical temporal memory, and cortical algorithms. Nature suggests sophisticated learning techniques that deploy simple rules to generate highly intelligent and organized behaviors with adaptive, evolutionary, and distributed properties. The authors examine the most popular biologically-inspired algorithms, together with a sample application to distributed datacenter management. They also discuss machine learning techniques for addressing problems of multi-objective optimization in which solutions in real-world systems are constrained and evaluated based on how well they perform with respect to multiple objectives in aggregate. Two chapters on support vector machines and their extensions focus on recent improvements to the classification and regression techniques at the core of machine learning.

Bayesian Nonparametrics

Bayesian Nonparametrics
Author: Nils Lid Hjort
Publisher: Cambridge University Press
Total Pages: 309
Release: 2010-04-12
Genre: Mathematics
ISBN: 1139484605

Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.